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This thesis reports measurements of fluid particle acceleration in a large Reynolds

number turbulent flow. The method for acceleration measurement is direct optical imag-

ing of the positions of tracer particles and extraction of their accelerations from the posi-

tion as a function of time. In order to meet the stringent imaging requirements for such

measurements, we have implemented an ultra high speed imaging system based on silicon

strip detectors. These detectors have been designed and optimized for vertex detectors in

high energy physics collider experiments. With this system we are able to measure two

coordinates of tracer particle positions with a dynamic range of better than 5000:1 and a

frame rate of 70,000 frames per second.

Acceleration measurements are performed in a flow between counter-rotating disks

from R� = 140 to R� = 970. The normalized acceleration variance is found to increase

with Reynolds number at the lower Reynolds numbers and becomes nearly constant at

the higher Reynolds numbers. This plateau is consistent with the Kolmogorov (1941)

prediction. Different acceleration components are found to have about 15% different



variance even at the highest Reynolds number. The acceleration probability distribution

is found to have strong stretched exponential tails and flatness greater than 50.

An analysis of various sources of sample bias and other systematic errors is per-

formed. Measurements of the acceleration variance as a function of the tracer particle

size and fluid density demonstrate that the small tracer particles are acting as fluid par-

ticles to within the accuracy of the measurements. Measurements of the acceleration of

larger particles provides direct measurement of the the forces on particles when they are

large enough that they are averaging over the small scale structure of the turbulence.
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Chapter 1

Introduction

The “problem of turbulence” can be stated so simply that it seems that there must be
a simple and elegant solution. The dynamics of an incompressible Newtonian fluid are
described by the Navier-Stokes equations

@u

@t
+ u � ru = �1

�
rP + �r2u (1.1)

r � u = 0; (1.2)

whereu is the velocity field,P is the pressure field,� is the fluid density, and� is the
kinematic viscosity. The problem is to fully describe the velocity and pressure fields given
the fluid density, viscosity and the boundary conditions. The boundary conditions require
zero velocity at all solid walls and usually include a method of forcing the flow.

The problem has been given scientific study for over a century, and no solution has
been found because the nonlinearity in the equations leads to instability and extremely
complex spatio-temporal dynamics. This can be clarified by non-dimensionalizing the
Navier-Stokes equations by typical length (L) and velocity (U ) scales:

@u

@t
+ u � ru = �1

�
rP +

1

Re
r2u (1.3)

r � u = 0; (1.4)

where all variables are non-dimensional andRe � UL
�

is the Reynolds number. At large
Reynolds number, the viscous damping term is small relative to the non-linear terms and
the flow is turbulent.

There is wide variety and deep complexity in the characteristics of flows as the Reynolds
number is raised beyond the transition to turbulence, and one might give up on finding a
solution to the problem. Many of the symmetries that make the Navier-Stokes equations

1
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simple to write down are spontaneously broken and simple descriptions become impos-
sible. But there is still hope of a simple and elegant solution. This is because, as the
Reynolds number becomes large enough, some of the symmetries originally satisfied by
the Navier-Stokes equations are restored in a statistical sense. Even some of the symme-
tries that were originally broken by the boundary conditions are partially restored.

Fundamental turbulence research has long been guided by the goal of developing a
statistical description of turbulence that can be applied to a broad class of flows and at
all large Reynolds numbers. Tantalizing progress toward this goal has been made, par-
ticularly through the ideas of A. N. Kolmogorov, but a comprehensive theory remains
elusive.

A powerful incentive for seeking a fundamental understanding of turbulence has come
from the fact that the most common fluids on earth, water and air, are accurately described
by the incompressible Navier-Stokes equations in most situations. As a result, there are
many engineering and environmental applications that require an understanding of turbu-
lence. Work in the field has been further motivated by the fact that as practical experience
and scientific study have led to insights into the nature of turbulent flow, it has become a
model problem for how to scientifically deal with highly nonlinear systems where a large
range of length and time scales are excited simultaneously.

Instead of a single solution to turbulence, over the last century there have arisen a mul-
titude of perspectives from which we can say something useful about turbulence. Certain
quantities have been measured very accurately in experiments. Numerical simulations
have revealed the details of low to moderate Reynolds number flows. Various modeling
approaches have allowed accurate calculations of certain classes of flows. Atmospheric
scientists have developed models that give useful predictions about atmospheric disper-
sion. Aerospace engineers have learned to predict turbulent drag on transportation ve-
hicles. Chemical engineers have learned to understand many characteristics of turbulent
mixers. And the list could be continued.

This thesis is about some new insights into the phenomenon of turbulence that have
been made possible by the development of experimental techniques for high resolution
particle tracking. There are a large number of fundamental and practical issues about
turbulence that can be best studied from the perspective of the motion of individual fluid
particles, called the Lagrangian perspective. On the fundamental side, most attempts
to describe the scaling of the temporal evolution of a turbulent flow make use of a La-
grangian perspective. Traditional measurement approaches which probe a fixed spatial
point as a function of time can not probe temporal scaling because the time evolution is
dominated by sweeping of small structures past the probe by large structures. If we wish
to study universal properties of the temporal evolution of a turbulent flow field, we must
use a frame of reference following individual fluid particles (Tennekes, 1975; L’vov et al,
1997). A host of practical applications of an understanding of the Lagrangian properties
of turbulence follow from the fact that turbulent transport is an essentially Lagrangian
phenomenon. Thus models that attempt to accurately deal with mixing are often written
in a Lagrangian framework. Lagrangian stochastic models are widely used for problems
ranging from atmospheric pollution transport to turbulent reactive flows (Weil et al, 1992;
Pope, 1985, 1994). High Reynolds number data is needed to determine model constants
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and check the accuracy of the models.
The importance of the Lagrangian perspective has long been recognized in the tur-

bulence community. In fact, some of the first scientific studies of turbulence by Taylor
(1921) and Richardson (1926) were focused on particle dispersion by turbulence. The
reason that we know relatively little from this perspective is that the tools have not been
available to obtain high Reynolds number Lagrangian data.

A few years ago at Cornell, we recognized a new experimental approach based on
the silicon strip detectors commonly used in high energy physics experiments that allows
particle tracking in turbulence at Reynolds numbers much larger than had been possible
before. The system that has been developed is capable of imaging particles at 70,000
frames per second with very high light sensitivity and positioning dynamic range of better
than 5000 to 1.

This thesis reports the first measurements with this system, which have focused on the
Lagrangian acceleration distribution in turbulence. Measurements are made of trajectories
of tracer particles in a water flow between counter-rotating disks withR� up to 1000. We
find that the acceleration probability distribution has strong stretched exponential tails
reflecting the intermittency of the acceleration. The flatness of the acceleration is found to
be greater than other small scale quantities. Measurements of the normalized acceleration
variance show an increase with Reynolds number up to aboutR� = 400 and nearly
constant at higher Reynolds number. The variance of different acceleration components
is found to be different by about 15% even at the highest Reynolds numbers, raising some
interesting questions about the local isotropy of the flow. A study of the acceleration of
different size tracer particles offers a new perspective on the motion of finite size particles
in turbulence.

In many ways, experimental Lagrangian research is still in its infancy. Detection
systems and flows amenable to high Reynolds number particle tracking are just beginning
to be uncovered. There are a tremendous number of quantities that need to be studied.
There are intricate issues of measurement accuracy and sample bias that must be wrestled
with. As a result, this thesis is far from a complete story. The current data already
points to some important results, but I see the deeper significance of this work in its place
in the opening of a new perspective. In the coming years we may solidly established
a Lagrangian phenomonolgy that describes the temporal evolution of turbulence in the
same way that current phenomenology describes its spatial structure. My hope is that this
research is seen as a demonstration that some of the measurements necessary to develop
these ideas are already possible.



Chapter 2

Background to Turbulence

This chapter is an attempt to cover the main background material which has guided our
work. Theoretical approaches will be discussed first followed by experimental and com-
putational work with an emphasis placed on the Lagrangian perspective. I can not begin
to do justice to all that has been done in the field, both because of the vast amount of work
that has been done, and because we do not yet have a solid theoretical framework with
which to unite our phenomenological insights. There are a wide variety of sources for a
more complete presentation of what is known about turbulence. The standard reference
book is Monin and Yaglom’sStatistical Fluid Mechanics, particularly volume 2, “Me-
chanics of Turbulence.” Other books that I have used extensively includeA First Course
in Turbulenceby Tennekes and Lumley,Turbulent Flowsby Pope, andTurbulenceby
Frisch. There are also a plethora of review articles. Recent ones include Warhaft (2000),
Nelkin (2000), Sreenivasan (1999), Sreenivasan & Antonia (1997), and Nelkin (1994).

2.1 Kolmogorov’s 1941 Theory

The underlying idea that affects almost all we know about turbulence is the cascade pro-
cess. When a fluid is stirred and the Reynolds number is large, the flow structures which
are created are unstable. They break up into smaller structures which are also unstable,
and the process continues until the structures become small enough that viscosity turns
their energy into heat. The concept of a cascade is credited to Richardson (1922), and
the concept was formalized into a useful theory by A. N. Kolmogorov in 1941. A broad
range of results that were obtained in roughly this time period using the approach that
Kolmogorov pioneered are commonly labeled together as the Kolmogorov (1941) theory
or K41 for short. I will present the familiar Eulerian Kolmogorov predictions first in or-
der to provide a connection to the almost exactly analogous quantities in the Lagrangian
perspective. There will be many details about precisely what is assumed and what the
shortcomings are for which I refer the reader to the references in the previous paragraph.
My goal is to give an overview of how the Kolmogorov theory has directed out thinking
about the Lagrangian perspective.

An important step in formalizing the cascade idea is to recognize that since energy is
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conserved, the average energy input due to stirring will be equal to the average energy
dissipated to heat by viscosity if the system is in a statistically steady state. The rate of
energy input per unit mass is� = u3=L whereu is the rms velocity andL is a length scale
characterizing the stirring. The rate of energy dissipated per unit mass is

� = 2� hsijsiji (2.1)

where

sij =
1

2

�
@ui
@xj

+
@uj
@xi

�
(2.2)

is the rate of strain tensor. In a cascade, the energy input and dissipation happen at very
different length scales; so a theory can be developed that relies on a separation of driving
and dissipation length scales with scales in between only passing the energy along.

Kolmogorov 1941 theory is based on three hypotheses, all of which assume suffi-
ciently large Reynolds numbers (Kolmogorov, 1941b).

� Hypothesis of Local Isotropy: Small scale motions in turbulence are statistically
isotropic.

� First Similarity Hypothesis: Statistics of small scale motions have a universal form
determined only by the average energy dissipation and the viscosity.

� Second Similarity Hypothesis: Statistics of intermediate scale motions have a uni-
versal form determined only by the viscosity.

2.1.1 Eulerian Kolmogorov predictions

Inertial Range

Consider the instantaneous velocity difference between two points in a turbulent flow
separated by a distancer,

�rui = ui(~x+ rêi)� ui(~x) (2.3)

where only the longitudinal component is considered for simplicity. Local isotropy and
the first similarity hypothesis imply that forr << L

h�rui�ruji = (��)1=2�E (r=�) Æij (2.4)

where� = (�3=�) and�E (r=�) is a universal function. If we further restrict attention to
the intermediate or inertial range of scales, then this second order structure function must
also be independent of viscosity and we have the prediction

h�rui�ruji = C2(�r)
2=3Æij (2.5)
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whereC2 is a universal constant. The same reasoning applied to arbitrary order moments
of �rui, yields the prediction

h(�rui)
pi � (�r)p=3: (2.6)

for r in the inertial range.
In addition to these predictions, Kolmogorov derived an exact relation for the third

order structure function from the Navier-Stokes equations (Kolmogorov, 1941a). This is

h�ru
3
i i =

4

5
�r; (2.7)

whenr is in the inertial range.

Dissipation Range

Kolmogorov’s hypotheses also imply that the velocity gradient distribution should only
depend on the average energy dissipation and the viscosity. The symmetric second order
moment has already been used to define the energy dissipation in Eq. 2.1. The anti-
symmetric second order moment is related to the squared vorticity, or enstrophy

!2 = 4
ij
ij = (r� u) � (r� u); (2.8)

where


ij =
1

2

�
@ui
@xj

� @uj
@xi

�
: (2.9)

The relation between the enstrophy and the average dissipation simply using their defini-
tions is

�

�
=


!2
�
+ 2

�
@2uiuj
@xi@xj

:

�
(2.10)

The term on the right is small (zero if the flow is homogeneous), and we find

h�i = �h!2i: (2.11)

So we see that the K41 theory is not needed to make predictions about the second or-
der moments of the velocity gradients. K41 does make non-trivial predictions about the
higher moments of the velocity gradient distribution. Since they all can depend only on�
and�, the normalized moments should be universal constants:D�

@u1
@x1

�pE
��

@u1
@x1

�2
�p=2

=Mp: (2.12)
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2.1.2 Lagrangian Kolmogorov predictions

Kolmogorov’s hypotheses can also be used to make predictions for the temporal evolution
of Lagrangian trajectories. This is less widely known partly as a result of an error in the
original paper (Kolmogorov, 1941b), and partly because the predictions have been much
more difficult to test with experiments. Kolmogorov originally proposed that his hypothe-
ses be applied to the full four dimensional space time velocity difference distribution. The
extension to Eulerian temporal velocity differences is an error (Tennekes, 1975). Since
the largest scale motions sweep the small scale structure past a point in the flow, the tem-
poral variations in the velocity at a point are dominated by the (non-universal) large scale
motions even for the very fast time scales. The solution to this is to look instead at the
temporal evolution of the flow along Lagrangian trajectories.

Inertial Range

Following the notation of Monin & Yaglom (1975) the second order Lagrangian velocity
structure function is defined as

D
L(2)
ij (�) = h(ui(t+ �)� ui(t))(uj(t+ �)� uj(t))i; (2.13)

whereui anduj are components of the velocity vector of a fluid particle and� is a time
difference. If the flow is statistically stationary and� � TL; whereTL is the Lagrangian
velocity correlation time scale, Kolmogorov’s hypotheses predict that at sufficiently high
Reynolds number

D
L(2)
ij (�) = (��)1=2�L (�=��) Æij; (2.14)

where� is the mean energy dissipation per unit mass,� is the kinematic viscosity,�� �
(�=�)1=2 is the Kolmogorov time scale, and�L(�=��) is a universal function. Furthermore,
in the inertial time range where� � ��, this result must be independent of� and one
obtains

D
L(2)
ij (�) = C0��Æij; (2.15)

whereC0 is a universal constant. Similarly, for the higher order structure functions in the
inertial time range

DL(p)(�) � (��)p=2: (2.16)

(For odd orders,DL(p) is zero by symmetry unless the absolute value of the velocity
difference is used.)
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Dissipation Range

Predictions for the moments of the fluid particle acceleration probability density function
(PDF) can be obtained by assuming thatui(t) is differentiable and taking the limit� ! 0
of the Lagrangian velocity structure functions. In particular, the second order structure
function scales as� 2 for small� yielding the prediction for the acceleration variance

haiaji = a0�
3=2��1=2Æij; (2.17)

wherea0 is another universal constant. The analysis that led to Eq. 2.17 can also be
extended to the higher moments of the acceleration distribution, and it is found that Kol-
mogorov’s 1941 hypotheses predict that the normalized acceleration moments should be
constants

hapi
ha2ip=2 = ap: (2.18)

Note that the acceleration variance is the Lagrangian counterpart to the mean dissipa-
tion and enstrophy in the Eulerian perspective. Equation 2.17 can be viewed as predicting
that the Lagrangian quantity,�1=2haiaii; is similar to the mean dissipation. It is charac-
teristic of the small scales yet its magnitude is determined by the large scales, and hence
it is independent of viscosity. We do not have any exact relations like Eq. 2.11 relating
the acceleration to the energy dissipation, so the relation between acceleration and energy
dissipation must be explored by experiment and simulations. Elucidating this relationship
is one of the primary goals of this thesis.

2.2 Pressure Gradients

Fluid particle accelerations in turbulence are dominated by the pressure gradient. Batch-
elor (1951) estimates that the viscous contribution is 2% of the pressure gradient contri-
bution to the acceleration variance. Numerical simulations by Vedula & Yeung (1999)
find that atR� = 235 the viscous contribution to the acceleration variance is 1.6% of the
pressure contribution. This means that the ratio of viscous force to pressure gradient force
is 13%.

The pressure structure function,h(�rp)
2i can be calculated from the fourth order

velocity structure functions. Hill & Wilczak (1995) provide a general derivation of this
relation which was originally derived using a joint gaussian approximation for the fourth
order velocity structure functions (Obukhov, 1949; Batchelor, 1951). In the limit of small
r, the pressure structure function contains the pressure gradient variance. Following the
notation of Nelkin & Chen (1999), the Hill and Wilczak relation implies that the pressure
gradient variance can be written*�rp

�

�2
+

= 4

Z 1

0

r�3 (L(r) + T (r)� 6M(r)) dr; (2.19)
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where the independent fourth order velocity structure functions are longitudinal,L(r) =
h�u4(r)i; transverse,T (r) = h�v4(r)i; and mixed,M(r) = h�u2(r)�v2(r)i. Here�u
is the longitudinal velocity difference and�v is the transverse.

The quasi-gaussian approximation used by Obukhov (1949) and Batchelor (1951) as-
sumes that the fourth order velocity structure functions are related to the second order as
they are for a joint gaussian distribution.

L(r) = 3[DLL(r)]
2 (2.20)

T (r) = 3[DNN(r)]
2 (2.21)

M(r) = DLL(r)DNN(r) (2.22)

whereDLL andDNN are the longitudinal and transverse second order structure func-
tions. Using an interpolation formula for the longitudinal structure function, Nelkin &
Chen (1999) obtain a value fora0 in Eq. 2.17 of 1.16. (a0 is 1/3 of�QG that Nelkin &
Chen (1999) report since they use the sum over all three coordinates.) Kaneda (1993) re-
views some earlier results for the value ora0 using similar approaches. The results from
numerical simulations by Vedula & Yeung (1999) and Gotoh & Rogallo (1999) are much
larger than this quasi-gaussian value. They finda0 = 3:4 at R� = 235 and growing as
R1=2
� . Nelkin & Chen (1999) interpret this as a combination of a low Reynolds number

effect and an intermittency effect. The quasi-gaussian value ofa0 calculated from the sec-
ond order structure functions of the numerical simulation data is growing with Reynolds
number because the simulations have a limited scaling range. It has just reached the high
Reynolds number limit atR� = 235. This is the low Reynolds number effect. The dis-
crepancy of the actual value ofa0 with the quasi-gaussian approximation is called the
intermittency correction. This is found to be growing at approximatelyR�

0:23.
Hill & Wilczak (1995) derive several expressions for the pressure gradient variance

from Eq. 2.19. These generally require precision measurements of the inertial and dissi-
pation range form of the fourth order velocity structure functions. I have not seen high
Reynolds number measurements used to determine the Reynolds scaling ofa0 from these
directly. An approximation by Hill & Wilczak (1995) suggests the high Reynolds scaling
of a0 � R0:22

� .

2.3 Refined Similarity Hypotheses

Soon after Kolmogorov proposed his 1941 hypotheses, it was observed that the K41 the-
ory could not be exactly right. It treats the average energy dissipation as the only relevant
quantity, but it is the fluctuating energy dissipation that is more relevant to the local tur-
bulence. Kolmogorov (1962) proposed that the K41 similarity theory could be refined by
assuming that the statistics of�ru depend on the value of the energy dissipation averaged
over a sphere of radiusr, which will be labeled�r, rather than on its global average,�.
For values ofr in the inertial range this yields

h(�ru)
p j�ri = Cn (�rr)

p=3 (2.23)
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The structure functions are then obtained by averaging this over the distribution of�r.
Kolmogorov (1962) assumed

h�qri
�q

�
�
L

r

��q

: (2.24)

whereL is the integral length scale in the flow. Experiments generally support this as-
sumption and find that the intermittency exponent is in the range�2 = 0:25 � 0:05
(Sreenivasan & Kailasnath, 1993). Kolmogorov used a log-normal model to determine
�q for otherq, but many other models have been developed. Corrections to the K41 scal-
ing can be found from ther dependence of the moments of�r. For more details on this
subject, see Sreenivasan & Antonia (1997) and references therein.

It is possible to apply the refined theory to calculation of intermittency corrections to
the acceleration variance. The replacement of Eq. 2.17 in the refined theory is

haiaji = a0�
�1=2Æij



�3=2r

�
(2.25)

Using equation 2.24 withr = �, q = 3=2, and the log-normal result�q = 1
2
q(q � 1)�2; it

is found that

haiaji = a0�
�1=2Æij�

3=2

�
L

�

�3�2=8

: (2.26)

SinceL=� � R
3=2
� , this implies that

haiaji � a0�
3=2��1=2ÆijR

9�2=16
� � R0:14

� : (2.27)

A similar calculation can be made for the acceleration flatness. Applying the refined
theory to the fourth moment gives

ha4i �
�
L

�

�3�2

(2.28)

Again using the lognormal model, the prediction of the flatness scaling is

ha4i
ha2i2 �

�
L

�

�3�2�3�2=4

� R
27�2=8
� � R0:84

� : (2.29)

This can be compared to the scaling of the velocity gradient flatness which is found ex-
perimentally to agree with the log-normal prediction,

F @u
@x
� R

3�2=2
� � R0:38

� : (2.30)

There have, of course, been many other intermittency models which improve on the log-
normal model of the energy dissipation. The measurements of the acceleration distribu-
tion is not currently of high enough quality to distinguish between intermittency models.
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The goal here is to point out that the intermittency models can make predictions of the
Reynolds number scaling of the acceleration distribution, and that it is expected to be
more intermittent than the velocity gradients.

Borgas (1993) has used a related approach to calculate intermittency corrections to the
acceleration variance. Instead of using the energy dissipation averaged over a sphere of
radiusr as the conditional variable, he uses the energy dissipation averaged over a timet,
along a Lagrangian trajectory, which will be designated�t. He then uses the multifractal
p-model (Meneveau & Sreenivasan, 1987) to determine the scaling of the moments of�t,
and obtains

haiaji � a0�
3=2��1=2ÆijR

0:13
� (2.31)

The predictions in equations 2.27 and 2.31 are identical for all practical purposes. Both of
these calculations use the assumption that the appropriate quantities to use in determining
scaling of small scale statistics are the standard Kolmogorov scales. In reality, the small
scale cutoff is fluctuating in an intermittent cascade (Nelkin, 1990) and so these are only
first order approximations.

I believe that Borgas has an important insight. Traditional work on intermittency
has focused heavily on the instantaneous spatial intermittency of the velocity and energy
dissipation. However, we expect that a turbulent cascade is both spatially and temporally
intermittent. The study of temporal intermittency requires Lagrangian measurements in
order to avoid sweeping effects. One way to develop a temporal phenomenology is to
analyze the energy dissipation averaged over a timet along Lagrangian trajectories as
Borgas has suggested. Temporal intermittency of other quantities such as the enstrophy
and the scalar gradient could be analyzed in the same way. Spatial intermittency of both
of these have have been found to be different from the dissipation and have been used
for refined similarity hypotheses (Chen et al, 1997; Stolovitzky et al, 1995). Another
possibility is to study the spatial and temporal intermittency of the squared acceleration.

2.4 Experiments

2.4.1 Eulerian Measurements

Most turbulence measurements have been made with hot film and hot wire anemometers.
These measure the velocity of the fluid by measuring the heat transported away from a
small heated film or wire. If the mean velocity is much larger than the fluctuating velocity,
the time series of the velocity is equal to the velocity along a spatial cut through the flow
at a single point in time. In this way, Eulerian spatial velocity differences can be measured
with great accuracy.

The first tests of the Kolmogorov theory were measurements of the Eulerian inertial
range predictions. The study by Grant et al (1962) using a hot film probe of turbulence in
a tidal channel found several decades inertial range where the second order statistics were
in excellent agreement with K41. A recent compilation (Sreenivasan, 1995) found over
50 measurements of Eulerian velocity structure functions measured with hot wire probes.
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Hot wire measurements in the last two decades have made it clear that there are de-
viations from the Kolmogorov predictions for the inertial range scaling of the Eulerian
velocity structure functions (Anselmet et al, 1984; Sreenivasan & Antonia, 1997). The
structure functions are found to have inertial range power laws,

h(�rui)
pi � (�r)�p; (2.32)

but for p greater than three,�p is less than the K41 prediction ofp=3. This deviation is a
result of intermittency in the energy dissipation. K41 assumed that the energy dissipation
is everywhere equal to its average. In reality it is a fluctuating quantity and experimen-
tally it is found to have very large fluctuations at large Reynolds numbers (Meneveau &
Sreenivasan, 1991).

Intermittency also causes deviations from the K41 predictions for the higher order
moments of the velocity gradient distributions. Van Atta & Antonia (1980) find that the
derivative flatness scales asR0:41

� , contradicting Eq. 2.12.

2.4.2 Lagrangian Measurements

Experimental Lagrangian measurements have been of three distinct types. The first mea-
surements used the theory of turbulent dispersion by Taylor (1921) to determine the La-
grangian velocity correlation function from the scalar dispersion. Shlien & Corrsin (1974)
provide a summary of measurements using this technique before themselves offering a set
of measurements.

The second technique was optically tracking tracer particles that approximated La-
grangian motion. Snyder & Lumley (1971) made the first systematic set of particle track-
ing velocity measurements from wind tunnel grid turbulence. Sato & Yamamoto (1987)
have reported similar measurements in water tunnel grid turbulence. Dracos (1996) de-
scribes a technique for stereoscopic imaging to record many particle tracks at once in
three dimensions. A preliminary study using this technique in a turbulent boundary layer
is reported in Virant & Dracos (1997). Mann et al (1999) have taken the technique de-
veloped by Dracos (1996) and have made extensive measurements in a flow between two
oscillating grids up toR� = 100. Although some of the results are difficult to recon-
cile with the numerical simulations of Yeung (1994), this work contains some important
steps toward reliable three-dimensional particle tracking. Each of these studies has been
helpful in illuminating the large scale Lagrangian properties of turbulence. All of these
measurements were forR� < 250, and none have observed an inertial range scaling of
the Lagrangian velocity structure function. Spatial and temporal measurement resolution
precluded precise acceleration measurements.

The third technique has been to use the relations between the fourth order velocity
structure functions and pressure structure functions described in section 2.2 to calculate
pressure gradient statistics from hot wire velocity measurements. This allows measure-
ment of particle accelerations since the acceleration of fluid particles is dominated by
the pressure gradient contribution for all but the smallest Reynolds numbers. Hill &
Thoroddsen (1997) have used this technique to study spatial acceleration correlations at
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R� = 208: Spatial resolution limitations kept them from reporting one point acceleration
statistics.

The only available high Reynolds number data came from balloon tracking in the
atmospheric boundary layer (Hanna, 1981). This data roughly supports the linear scaling
of the Lagrangian velocity structure function in the inertial range (Eq. 2.15) and the value
of C0 is 4:0 � 2:0. Unfortunately, the small sample size and variable flow conditions
limited the conclusions that could be drawn.

Most of what we have learned about small scale Lagrangian properties of turbulence
has come from direct numerical simulations (DNS). DNS has provided unparalleled ac-
curacy forR� < 250, and this upper limit is slowly increasing as computers become more
powerful. The fast (R6

�) increase in computational cost with Reynolds number means that
the Reynolds numbers attainable in simulations will likely remain modest for many years.
The combination of the precision and well controlled flows available from simulations
with the high Reynolds number and complex flow conditions available from experiments
will likely continue to be essential.

Yeung & Pope (1989) provided a comprehensive numerical study of Lagrangian statis-
tics in artificially forced isotropic homogeneous turbulence. Squires & Eaton (1991) cal-
culated Lagrangian statistics of homogeneous shear flows. Yeung (1994, 1997) studied
two particle Lagrangian statistics in isotropic simulations and Vedula & Yeung (1999)
have extended the one-particle results toR� = 235: Gotoh & Rogallo (1999) have con-
ducted homogeneous isotropic simulations up toR� = 172 and report small scale pressure
statistics. There is a wealth of information that has been extracted from these simulations,
but I will only highlight three points. First, no inertial range is observed in the Lagrangian
velocity structure functions. This suggests that Lagrangian statistics, like pressure statis-
tics, require much higher Reynolds numbers before inertial range scaling is observed.
Second, the acceleration variance is not scaling as predicted in Eq. 2.17 forR� < 235:

Instead it is found that rather than being constant,a0 scales asR1=2
� across this range of

Reynolds numbers. Third, the acceleration flatness is 39 atR� = 235, which is much
larger than other small scale statistics.

In section 2.1.2 the fluid particle acceleration was discussed as a small scale quantity
analogous to the velocity gradients. There are some major differences in their statistical
properties though. An important difference is in the flatness of their probability distri-
butions. The longitudinal velocity derivative, which has recieved the most careful study
using hot wire anemometry, has a flatness of 6.0 atR� = 200 (Van Atta & Antonia,
1980). The transverse velocity derivative flatness is 8.5 at this Reynolds number (Chen
et al, 1997). The passive scalar gradient, another small scale quantity, has a flatness of 17
at the same Reynolds number (Warhaft, 2000). The acceleration is more intermittent than
any of the others, having a flatness of 34 atR� = 200 (Vedula & Yeung, 1999).

2.4.3 Anisotropy of high Reynolds number flows

An important avenue of current research concerns the effects of the largest scale motions
on inertial and dissipation range quantities. Many studies reviewed in Sreenivasan (1991)
and Warhaft (2000) find that passive scalar gradient statistics are not even approximately
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isotropic up toR� = 1000. Sreenivasan & Dhruva (1998) find that even atR� = 20; 000
there are significant effects on inertial range scaling of velocities from large scale shear.
Arad et al (1998) proposes a method of decomposing inertial range quantities using spher-
ical tensors that allows separation of the isotropic sector from the anisotropy introduced
at the large scales. Shen & Warhaft (2000) finds that in a homogeneous shear flow up to
R� = 1000, statistics of the velocity gradient of order greater than three have anisotropy
that is constant or growing with Reynolds number. These and other studies suggest that
the idealized model of infinite Reynolds number is not sufficient to fully describe the
small scale properties of turbulence at Reynolds numbers which exist on earth.

2.5 Motion of Spherical Particles in Turbulence

In order to understand the effect of finite size tracer particles in our measurements, we
made some measurements of the acceleration variance as a function of particle size and
fluid density. The results are presented in section 4.8. We find that the regime we are
operating in is very far from the one that has been traditionally studied, and so there
is little directly relevant background information to review. Nevertheless, I will briefly
review some of the work that has been done in this area as a context for our measurments.

The problem of the motion of rigid spherical particles in a turbulent flow has been a
topic of research for over 100 years. Basset (1888), Boussinesq (1903), and Oseen (1927)
all considered the settling of a sphere due to gravity in a fluid at rest. Tchen (1947)
developed an equation for a rigid sphere moving in an inhomogeneous flow. Corrsin &
Lumley (1956) identified some errors and made improvements to Tchen’s equation. (As
I received my first formal introduction to turbulence in a class taught by John L. Lumley,
I find it noteworthy that this was the problem on which he wrote his Ph.D. thesis under
Stanley Corrsin).

The equation which is generally accepted today was obtained by Maxey & Riley
(1983).

mp
dV

dt
= (mp �mf) g +mf

Du

Dt
� 1

2
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dt

�
V� u(X(t); t)� 1
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a2r2u

�

�6�a�Q(t)� 6�a2�

Z t

0

d�
dQ=d�

(��(t� �))1=2
;

(2.33)

whereu(x; t) is the undisturbed fluid velocity field,V(t) is the particle velocity,X is
the position of the particle center,mp is the mass of the sphere,mf is the mass of the
displaced fluid,a is the particle radius,g is the acceleration of gravity,� is the viscosity,
and

Q = V� u(X(t); t)� 1

6
a2r2u: (2.34)

The terms in Eq. 2.33 are called gravitational, force from the undisturbed flow field, added
mass, Stokes drag, and Basset history term.
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This equation is valid for small particle Reynolds number,Rep = ju � Vja=� �
1, small shear Reynolds number,Res = a2=��� � 1, and for small particles so that,
a=� � 1, where� and�� are the Kolmogorov length and times scales characterizing the
smallest scales of the undisturbed flow. A different way of writing the shear Reynolds
number condition is to require that the Stokes time(�s = a2�p=��f) be much less than
the Kolmogorov time. Determining the effects of small deviations from the limits listed
above (Mei et al, 1991), and finding methods of solution of Eq. 2.33 (Coimbra & Rangel,
1998) are still topics of current research interest.

We find that nearly neutrally buoyant tracer particles accurately reproduce the ac-
celeration of the fluid even when the conditions on shear Reynolds number and pariti-
cle size are far from satisfied. For example, the acceleration variance of46 �m diam-
eter polystyrene spheres in water is within 10% of the small particle limit even when
� = 18 �m. In this case the Stokes time is550 �s compared to a Kolmogorov time of
330 �s. Prediction of the motion of particles of this size range requires a much more
involved theory including the structure of the dissipation scales in the turbulent flow and
the modification of the flow by the particles.



Chapter 3

Techniques for High Resolution
Measurement of Particle Trajectories in
Turbulence

The techniques that we use for particle tracking in intense turbulence are conceptually
quite straight forward. We optically track tracer particles, using the same technique that
the eye uses to measure wind velocities during a snow storm. The reason that these
measurements have not been made previously is that there are several major technological
barriers to high resolution particle tracking at large Reynolds numbers.

This chapter describes the experimental apparatus and protocols. During my graduate
studies, we have built and made measurements with two generations of detection systems
for particle tracking. The first system was based on a position sensitive photodiode. This
is described briefly in section 3.1.2, with most of the details contained in Appendix A.
The second generation system, which was used to acquire most of the data for this the-
sis, is based on silicon strip detectors. Sections 3.1.3 through 3.1.5 describe the silicon
strip detectors, readout electronics, and data acquisition codes. Section 3.2 describes the
components of the optical system. Section 3.3 describes the turbulent water flow between
counter-rotating disks.

3.1 Detectors

3.1.1 Imaging frame rate requirements

The best available method for measuring particle trajectories in turbulence is optically
measuring particle positions and determining velocities and accelerations from position
versus time information. The primary barrier which has limited Lagrangian measure-
ments using this technique is the difficulty of accurately measuring positions of tracer
particles with sufficient time resolution. A simple calculation illustrates why this is the
case.

We wish to generate intense turbulence (in our flow we reachR� � 1000) in a labora-
tory flow. The natural choice of fluid is water since it has a low viscosity (1�10�6 m2=s)

16
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and tracer particles are available near water’s density. (It also is cheap, non-toxic and
works well at room temperature.) The integral length scale is limited since the experi-
ments must fit in a Cornell laboratory. In our flow we findL = 7 cm. From the relation

R� =
p
15uL=�; (3.1)

it can be seen that this implies an rms velocity of 0.95 m/s. Now using� = u3=L, the
Kolmogorov scales of time and length are

�� = 287 �s (3.2)

� = 17 �m: (3.3)

To fully resolve particle trajectories, the detector must capture motion which occurs on
time scales at least as short as the Kolmogorov time. We find that we need more than15
position measurements per characteristic time to resolve particle accelerations, and this
implies that a frame rate of more than50 kHz is required. A resolution of about 500 pixels
is necessary to measure trajectories with sufficient spatial resolution.

Comparison of this requirement with current CCD detector systems leads to the con-
clusion that these measurements cannot be made. Standard CCD cameras operate at 30
Hz, and special high speed CCD imagers are available that run at up to a few thousand
frames per second; but 50 kHz readout for thousands of sequential frames is not going to
be available in the near future.1

3.1.2 Position sensitive photodiode

The first fluid particle acceleration measurements we made were with a position sensitive
photodiode. The detector was part number DLS10 from United Detector Technologies. It
is essentially a large square photodiode (1:0 cm on a side) which allows an analog two-
dimensional measurement of the position of a single light spot. It works by measuring
the fraction of the photo-current that migrates to the top vs. bottom of the front plane,
and to the right vs. left of the back plane. The response time of this detector (500 kHz) is
more than adequate. The measurements made with this system were published inPhysics
of Fluids, 10:9, 1998, p. 2268–2280. This paper along with some reinterpretations of the
data in it are contained in Appendix A. Although the low light sensitivity and relatively

1There have recently been several interesting approaches to high speed CCD imaging that might ques-
tion this conclusion. One is the Princeton Scientific Instruments Ultra Fast Framing CCD Camera. This
camera can read out images at up to 1 MHz, but is limited to 32 consecutive frames followed by seconds
of readout time, so extended particle tracking is not feasible. People sometimes notice advertisements of
cameras with “up to 40 kHz frame rate.” For example, see the Kodak EKTAPRO HS Motion Analyzer
Model 4540. This camera can read256� 256 images at up to 4500 frames per second, but reaches 40,500
frames per second only by reading out a small part of the frame. The one way around the huge amounts of
data produced by high speed pixel imaging is to have parallel front end compression of the data. Someday
we may have cameras that output only the positions of light spots rather than full images. This would allow
pixel based cameras to reach the speeds necessary for Lagrangian measurements.
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Back Side Current

Front Side
Current

Figure 3.1: Diagram of charge collection in a double sided strip detector.

poor position measurement accuracy of this detector were major limitations, this first
round of experiments provided insights that have been essential in guiding the design of
the new particle tracking system.

3.1.3 Silicon strip detectors

A tremendous improvement in the light sensitivity and position measurement accuracy
has been made possible by the new silicon strip detector imaging system. Strip detectors
have been developed and optimized through many years of effort by the high energy
physics community. The detectors we use were designed as charged particle detectors for
the CLEO electron positron collider experiment here at Cornell (Fast et al, 1999). Strip
detectors are essentially large (5.12 cm by 2.56 cm) planar photodiodes, made of 300�m
thick high resistivity n-doped silicon. The front, junction side is subdivided by p-type
implants into 511 sense strips, allowing measurement of the one dimensional projection
of the light striking the detector.

Strip detectors have a large speed advantage over a conventional CCD camera, since
only 511+511 strips must be read to localize the particle in 2D, compared with511�511
pixels for a CCD camera of equivalent resolution. The current system can read out the
detector at rates up to 70,000 frames per second.

The original plan was to use double sided strip detectors which allow the measurement
of both a horizontal and vertical projection of the same image. These detectors have the
ohmic (back) side of the detector also divided by p-type barriers into 511 n-type sense
strips orthogonal to the front p-type strips. A simple diagram showing the geometry
of charge collection in a double sided detector is in Fig. 3.1. When a charged particle
or photon strikes the detector, electron-hole pairs are created. Holes are collected by the
nearest p-type strip on the front side, and electrons are collected by the nearest n-type strip
on the back side, and so the two coordinates of the position of the particle are measured.

When we tested detectors of this type, we found that the signal read from the back
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Figure 3.2: Diagram of p-z and p-� detectors. The arrow shows the path the holes take
from the light spot to the readout electronics.

of the detector was more than a factor of 5 weaker than the front side signal. We believe
that this results from the fact that the multimode argon ion laser photons we use for illu-
mination have a very small penetration depth in silicon when compared with the infrared
photons or high energy charged particles that had been used previously. Since the elec-
trons and holes are created near the front surface, the holes migrate to the p-type strips as
expected, but the electrons appear to be trapped in surface states and do not migrate to the
back plane immediately.

This has led us to use single sided detectors. These are only segmented on the front
side and only read out one projection of the image. We have continued to use the double
sided detectors that existed, but only read out the front side. It is not a great loss to use
only single sided detectors since it is generally simpler to make two single sided detectors
than one double sided one. Reading out two single sided detectors requires the same
acquisition electronics as one double sided. One loss is that a beam splitter must be used
to image onto the two detectors and so half the light is lost. It also creates some additional
problems in aligning the two detectors.

The detectors we have used also come in two strip layouts. Most of them have the front
p-type strips running along the short side of the detector, and are called p-z detectors. The
other kind has p-type strips running along the long side of the detector, and are called
p-� detectors. This nomenclature results from the cylindrical geometry of the silicon in a
high energy vertex detector in which the detectors can measure either z or�. A diagram of
each of these detectors is shown if Fig. 3.2. Because of the layout of the vertex detection
systems, all the detectors are read out from a short side, so the p-z detectors have readout
traces orthogonal to the strips that are connected to the p-type strips along a diagonal as
shown. In the diagrams, The p-z detector measures the horizontal position of the light
spot and the p-� measures the vertical.

While testing the detectors we noticed a strange property of the p-z detectors that that
has turned out to have some benefits. A weak negative signal marking the vertical position
of the light spot is visible in addition to the expected positive signal marking the horizontal
position. Our explanation of this is related to the reason the double sided detectors did
not perform well, and is shown in Fig. 3.3. Since charge separation takes place in a
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Primary

Conjugate

Figure 3.3: Diagram showing charge collection of the conjugate signal.

shallow layer near the surface of the detector, holes are quickly collected by the p-type
strips and a positive signal marks the horizontal position of the light spot. However, the
electrons are apparently trapped in surface states, and as a result they capacitively couple
to the readout traces above them. This creates a negative conjugate signal that marks the
vertical position of the light spot. The conjugate signal is not as reliable as the primary
one, but it is often very useful to be able to read two coordinates from a single detector.

A listing of all the detectors used up to this point is in Table 3.1. All of the p-z
detectors manufactured by Hamamatsu have worked quite well for the required imaging,
although they have significant differences in conjugate peak characteristics. The one p-
� detector we tested was manufactured by CSEM and it performed much more poorly.
It had about a factor of four lower light sensitivity. Tests are continuing to determine
whether this is a geometry or manufacturer issue.

It is quite possible that significant improvement in the sensitivity of these detectors
could be obtained if they were optimized for visible photon detection. The ones we have
been using were designed for detecting high energy particles which deposit their energy
through the bulk of the detector rather in a shallow surface layer as visible photons do.
The current detectors have a major advantage though in that we have extra detectors freely
available from the CLEO III prototype runs. We also have all the components and equip-
ment for assembling them here at Cornell.

3.1.4 Readout electronics

A photograph of a completed detector with its front end readout electronics is shown in
Fig. 3.4. The circuit board on which it is mounted is called a hybrid board. A schematic
diagram of the hybrid board showing two channels of the detector and front end readout
electronics is shown in Fig. 3.5. In the photograph, the detector is the grey rectangle at
the left. The detector is reverse biased with a bias voltage ranging from 50 V to 160
V depending on the detector. 512 wirebonds connect the strips of the detector to the RC
chips which contain a resistor and capacitor to AC couple each channel. The RC chips are
the 4 large lighter chips at the center of the image. 512 more wirebonds connect the RC
chips to VA1 (Viking) chips which contain individual preamplifiers, shapers, and sample
and hold amplifiers. The Vikings also contain the multiplexers to create the analog output
stream. We obtain the Viking chips from IDE AS, a company in Norway. There are 4
Viking and 4 RC chips with 128 channels on each. A major challenge in assembling
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Table 3.1: List of detectors and their characteristics. DS stands for double sided. SS
stands for single sided. p-z and p-� label the orientation of the strips.

Label Type Manufacturer Notes
H0 DS p-z Hamamatsu First detector. We began testing it in the sum-

mer of 1998. In spring 1999, Viking # 1 died–
apparently because of a drop of epoxy on it.
It has average conjugate signals that appear at
50 V bias.

H1 DS p-z Hamamatsu Identical to H0 except that this was used in
radiation damage tests, and so has a much
larger dark current. It also has stronger con-
jugate signals, which we believe is a result of
the radiation. In fall 1999, 2 of its Vikings
died.

MH1 SS p-z Hamamatsu First detector on a modified hybrid, Oct.
1999. Conjugate signals are weaker and ap-
pear around 100 V. Also has a strange cou-
pling of channels 16 and 48 on each Viking
chip.

MH2 SS p-z Hamamatsu Similiar to MH1. Built Nov. 1999. Has
a wirebonding problem so that every other
channel is shifted by two channels.

MH4 SS p-� CSEM Built Dec. 1999. Has a wirebonding problem
so that every other channel is shifted by four
channels. Light sensitivity is about a factor of
4 lower than the others.
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Figure 3.4: Photograph of a hybrid board containing a detector, RC chips, and Viking
chips.
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Figure 3.5: Schematic of the hybrid board
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the detectors is make the1024+ wirebonds without producing too many dead channels.
The 4% to 10% dead channels which we have achieved so far cause some difficulties in
interpreting the data.

A major part of our work has been implementing a fast readout system for the strip
detectors. In the CLEO detector system, 600 detectors are read out simultaneously at
rates on the order of 50 Hz. For our application we want to read out a single detector
as fast as possible, and thus needed to redesign the readout electronics. The solution we
have developed can read out a sequence of 4000 frames at rates up to 70,000 frames per
second on each of two detectors. Every frame contains of the intensity on each of 512
strips. It then takes about a second to process the data before being ready to acquire
another sequence.

A block diagram of the system is shown in Fig. 3.6. The overall control of the system
resides with the detector controller and the master computer.

The detector controller is a custom built digital card which contains the master clock.
It produces the timing signals that sequence the readout of the Viking chips. It sends the
clock and trigger signals that control the analog to digital converters in the slave com-
puters. It drives the acousto-optic modulator (AOM) which modulates the illumination
laser beam. The controller also manages the flow of data by exchanging digital signals
with the master computer, sending atrigger done signal when a sequence of frames
has been acquired and waiting for acomputer busy signal to clear before re-enabling
acquisition. At the beginning of a run, the master computer downloads parameters to
the detector controller which determine the frame rate, number of frames per sequence
and AOM illumination profile for acquisition. Details of the design and operation of the
detector controller are in Appendix B.

The master computer’s role is to mediate the data acquisition process, arming the
slaves for acquisition, initiating data download and sparsification when the controller in-
dicates that an acquisition is completed, and signaling the controller when the data has
been downloaded and the slaves are rearmed. It also provides a user interface, allowing
the configuration of all parts of the system to be specified in a single control program.
The master and slave computers are all Pentium Pro 180 MHz machines.

TTL signals from the detector controller are passed to repeater cards which were de-
signed for the CLEO detector. These convert the TTL signals to low voltage differential
signals that are sent to the Vikings. The repeater cards also have potentiometers which
control the currents and voltages needed to set Viking preamp and shaper parameters.
(VFP , VFS, prebias, shapbias, bufbias). See the repeater card and hybrid card documenta-
tion books for more details. The values which were used for the repeater card potentiome-
ters were:VFP = �0:013V, VFS = 0:164V, prebias = �0:5V, shapbias = �0:029V,
andbufbias = �0:024V. These were chosen by putting a light spot on a detector and
adjusting the potentiometers to maximize signal and minimize ringing on subsequent
frames. This can be done by gating the AOM signal with a square wave generator and
an AND gate. When the repeater potentiometer settings were rechecked recently they
seemed to have changed significantly. It would likely be useful to monitor these settings
more closely in the future.

The analog outputs from the Vikings are passed through differential amplifiers before
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being converted to digital. These are high speed differential amplifiers with voltage gain
of 41.6.

The actual analog-to-digital conversion of the strip detector output is done in the slave
computers. Each slave acquires, processes, and stores the data from one detector (512
strips). Each of these computers is equipped with two high speed GaGe 12-bit signal
acquisition cards, giving each slave four input channels that can each operate at rates up
to 30 MHz. Each input channel digitizes the analog signal from one Viking chip. We
normally operate with a 10 MHz readout clock. These cards have enough on-board mem-
ory to acquire 4,000 frames of data. Each card is controlled by a device manager process
which allows the cards to be remotely configured, armed for acquisition and read out in
response to messages sent by the master computer. Each of the slave computers also runs
an on-line analyzer process which, when prompted by the master program, copies the data
from the device manager process, sparsifies the data by applying configurable threshold
conditions, and writes the data to a local disk file in a compressed format. The software
is designed so that on-line processing can be performed concurrently with acquisition of
the next sequence of frames.

3.1.5 User interface software

There are two programs that can be run on the master computer to control the acquisition
process. The X-windows applicationgrab seq allows interactive data acquisition for
testing and debugging. The command line programmaster is a noninteractive data ac-
quisition program, which repeatedly signals the slaves to acquire data, measures propeller
speed and temperature and maintains a small data file containing this data and an index to
the data recorded by the slave computers. Arthur La Porta wrote these programs and has
provided complete documentation in the group web pages.

The procedure for acquiring data is as follows:

� Runslave setup on each of the slaves from the directory the data will be written
to. This startsg server processes for each of the GaGe boards, and starts a
chopper process.

� Write a master configuration file for the run that has the right parameters for reading
the Viking pedestals, and load it intograb seq . (This requires that the zero files
contain all zeros and thatchopper align is set to 1.)

� Grab a sequence and save the channel means to a zero file.

� Write another master configuration file with the same parameters as before but
chopper align = 2 and the new zero files.

� Load the new master configuration file intograb seq and acquire data interac-
tively or run:master <cfg file> .

Failure modes to be aware of include:
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� If the detector controller is not powered up when the master configuration is loaded,
the slave computers will hang since the GaGe cards never get a clock signal.

� Changing the frame rate, AOM settings, bias voltage or repeater card settings will
change the pedestals. Be sure to make new zero files when these are changed.

3.1.6 Data analysis software

Track identification

The raw data from the strip detectors are stored on hard disks on each of the slave com-
puters. A master file which indexes these files is stored on the master computer. The first
step in analysis is to extract the particle trajectories from raw data. The codeseq track
performs this task. It was written by Arthur La Porta and is documented on the group web
pages.

The task is divided into four stages, peak detection, tagging, track building and splic-
ing. Below, we give a grossly simplified description of the algorithms.

peak detection Each frame is scanned for peaks. Peaks are found by marking all groups
of pixels that go above a threshold. For each frame, a list is compiled of all peaks
found and their properties, such as position, area, peak amplitude, moments, etc.

tagger The tagger assigns a tag (an integer) to each peak in the first frame. It then ad-
vances to the next frame and determines whether each peak in that frame corre-
sponds to a peak in the previous frame, applying the condition that they must be
mutual nearest neighbors. When a peak is recognized as the continuation of a peak
in the previous frame, the tag is copied to the new peak. Peaks not identified are
assigned new unique tags. The process is repeated for all of the frames in the se-
quence. The result is that all the peaks that make up continuous tracks are given a
common tag number.

track builder The track builder simply scans through the list of peaks and groups all
peaks having identical tags into tracks.

splicer The tracks obtained from the track builder are generally short segments which
must be spliced into larger tracks. This is because the tagger only looks one frame
ahead to assign tags. A track becomes broken if a peak is missing (because it hit
a weak pixel, or because an amplitude fluctuation brought it below threshold) or if
an ambiguity occurred, such as two tracks crossing. The splicer inspects the tracks
and determines if two segments should be joined into one track. This is done by
an iterative algorithm which scans all of the tracks and joins the pair that have the
highest figure of merit, repeating until no splicable pair remains.

The track identification program is actually more complicated than is described above,
having approximately 50 tunable parameters which are adjusted to effectively analyze
data taken under different conditions. Particular care is used in resolving ambiguities
caused by non-ideal circumstances, such as dead pixels, crossing of tracks, and multiple
reflections from particles.
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Matching different coordinates

The next step in the analysis procedure is to match the tracks that were measured on
different detectors into full trajectories. A working version of a general purpose code to
do this has been written. For the results reported in this thesis though, I have used a simple
version that matches two sets of tracks when the particle density is low. The idea behind
the matching is that even though the strip detector does not give the information to match
the coordinates from different detectors, intensity correlations and position correlations
can be used to make the proper matches.

When two detectors view particles through the same light collection optics, the in-
tensity of the signal recorded by the detectors are highly correlated. When the detectors
use different optics, the correlation is not nearly as good. There are several ways that the
intensity can be different when different optics are used. One is that the detectors are not
viewing the exactly the same illumination volume. Another is that the scattered intensity
from the particles has some fast time scale fluctuations that are caused by either surface
inhomogeneities of the particles or by other particles interfering with the beam. These
fast time scales are not well correlated across different optical axes. Eventually we plan
to match two coordinates from the same optics, and then use a shared coordinate to match
this to two detectors on different optics. Since the data reported in this thesis generally
only concerns single coordinate statistics, matching was unnecessary. In the few instances
where matching was used, tracks were matched when they were in view at the same time
and had a higher intensity correlation than any other particle in view. This has problems
when tracks are broken up and many particles are in view. It was more than sufficient for
the current data, even for detectors on different optical axes, because the data rarely had
more than one particle in view at once.

Statistical Analysis

The final data analysis program takes track files and calculates statistics of velocities,
accelerations. This code is calledant for “ANalyze Tracks”. Details are discussed along
with the results in Chapter 5.

3.2 Optical System

3.2.1 Requirements for the optical system

The process of illumination and imaging tracer particles onto the detectors seems quite
straight forward, but it turns out that it contains some significant challenges as well. The
fundamental issue is that tracking particles over significantly long times requires illu-
mination of a somewhat large volume in the flow. In order to achieve reasonably well
focused imaging of the full volume (large depth of field), the numerical aperture of the
optical imaging system must be quite small. Further, the tracer particles must be kept
small enough that they resolve the smallest scales in the flow. The result of these con-
straints is that it is difficult to collect enough light. The illumination sources that can be
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Figure 3.7: Photograph of the flow, optics, and detectors.

used are limited by the fact that the strip detectors are AC coupled and so the illumination
must be flashed at the frame rate.

This limit on illumination intensity is one of the reasons why the first measurements
we have pursued with the strip detector system are acceleration measurements. Since
the tracking time necessary to make acceleration measurements is small, the illumination
beam can be small and intense. Acceleration measurements require extremely high spa-
tial resolution which places stringent requirements on the imaging system and the tracer
particles. This section describes the optical system that we have built to meet these re-
quirements. Figure 3.7 is a photograph of the flow and optical system. A diagram of the
illumination and imaging is in Fig. 3.8

3.2.2 Illumination

A 5 Watt Spectra Physics Stabilite 2016-05RS Argon ion laser is used for the illumination
beam. It is operated multiline, and produces most of its power at 514.5 nm and 488.0 nm.
Laser illumination is necessary because the AC coupled detectors require that the illumi-
nation be flashed at the frame rate. Our frame rates range from 10 kHz to 70 kHz. Pulsed
illumination in this frequency range is difficult to obtain. Frequencies of strobe lamps are
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too low. Q–switched lasers are also too slow. Mode locked laser beams are too fast. The
solution we have found is to use a CW laser beam and modulate it with an acousto-optic
modulator. The argon ion laser also has advantages of good pointing stability and low
beam divergence.

The acousto-optic modulator is model AOM-40 from IntraAction. The detector con-
troller creates a TTL square wave that determines when the illumination is on. This is run
through an op-amp circuit to shift the zero level and amplitude of the square wave before
sending it into the AOM signal processor. The signal processor creates the modulated 40
MHz signal that drives the acoustic wave in the AOM. When carefully tuned, the AOM
can diffract 90% of the photons into the first order beam. Tuning is accomplished by
measuring the diffracted beam with a photodiode and adjusting the angle of the AOM and
the amplitude and offset of the control signal.

The first order diffracted beam is passed through a telescope to adjust its diameter and
then directed into the turbulence chamber. One issue is that the AOM produces slightly
different diffraction angles for different optical wavelengths. The difference between the
488 nm and 514.6 nm is 0.000268 radians, which results in 0.54 mm distance between the
beams at 2 meters. I calculated that this can be almost totally corrected by using a weak
prism (8:6Æ for BK 7 glass). Since our illumination volume is about 2 mm in diameter, we
have simply used a slightly elongated beam rather than order and install a custom prism.

For the acceleration measurements, a cylindrical beam typically 2 mm in diameter is
used. For the measurements of the energy dissipation described in section 4.7, a light
sheet 0.2 mm by 2.0 cm was used.

3.2.3 Tracer Particles

The tracer particles are a crucial part of the optical system. They not only must adequately
follow the flow, but they must be spherical and highly uniform because we measure their
position with accuracy of a small fraction of their diameter.

The only particles we have found that are near the density of water and meet these
requirement are polystyrene DVB spheres. These are available from several companies
in diameters from 20 nm to 1 mm because of their wide use in biochemistry. We have
found Duke Scientific to be the most reliable supplier. Spheres with diameter less than
50 �m must be purchased with the desired size distribution, since it is difficult to sieve
particles of this size. Spheres larger than 50�m can be sieved from batches with wider
size distributions.

Transparent particles such as these have much stronger forward scattering than at
90Æ We originally used illumination orthogonal to the imaging axis since this makes the
simplest illuminated volume. Since we are illumining a volume though, we can use a
forward scattering geometry where there is much more light with only a modest increase
in the depth of the illumination volume. We have settled on45Æ forward scattering as
shown if Fig. 3.8 because it allows two orthogonal imaging systems to be used.

Another major advantage of45Æ forward scattering is that the multiple reflections from
transparent particles are suppressed. Figure 3.9 shows light scattering from a polystyrene
sphere. A 700�m sphere was glued onto a small wire and illumined with a large beam
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Figure 3.9: Images of light scattered from polystyrene spheres. A) Overexposed image
from 90Æ showing the outline of the approximately 700�m sphere. The wire with which
the sphere is supported is visible at the bottom. B) Image taken from90Æ. C) Image taken
from 45Æ forward scattering.
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from a laser. For tracer particles, we typically use particles in the 25–500�m size range.
These are large enough that the distribution of scattered light should not depend on the
particle size, so the 700�m sphere should be representative. These images are of the
particle in air, although qualitatively similar effects are observed when the sphere is in
water. Figure 3.9A was overexposed to show the outline of the particle. The support wire
can be seen at the bottom of the image. The light beam is incident horizontally from
the left. Note the position of the primary external reflection on the left and the internal
reflection on the right. Figure 3.9B shows that at90Æ both reflections are visible although
the external one on the left is brighter. Figure 3.9C shows that at45Æ forward scattering
the internal reflection on the right is much brighter. It had to be overexposed in order to
even see the reflection on the left. The camera shutter speed was adjusted so that both
images B and C were not saturated, but the45Æ actually has much higher intensity. In our
first measurements taken at90Æ, the secondary reflection was a major problem because
sometimes when the primary reflection was blocked, the secondary position would be
chosen as the position of the particle.

Another important factor is that the reflections are different for different polarizations
of the illumination. Figure 3.9 shows the vertical polarization. When horizontal polariza-
tion is used, the external reflection on the left is suppressed even more. The result is that
using horizontally polarized light at45Æ forward scattering produces only one bright spot
which is ideal for particle tracking.

Note that the size of the spot is a very small fraction of the particle diameter. This is
necessary since we measure particle positions with accuracy of better than0:5�m which
for 50�m particles is 1% of the particle diameter. It is essential that the particles have
very good surface quality to allow positioning with this accuracy. The evidence suggests
that polystyrene particles are sufficiently optically smooth for this purpose. As will be
discussed in Chapter 6, when we increase the particle diameter, the measured acceleration
variance decreases. This suggests that surface inhomogeneity is not a major contribution
to the acceleration, although it might just be smaller than the effect due to the particles
not following the flow. The most convincing evidence is that when a component of the
acceleration of individual trajectories is measured from two orthogonal optical axes, the
measurements agree very well. This data is shown in Section 4.9.1. Any motion due to
surface inhomogeneity should not be correlated between different angles of view.

3.2.4 Imaging Optics

A two stage imaging system shown in Fig. 3.8 is used to obtain the high magnification
imaging needed for acceleration measurements. First, a 15 cm positive doublet (L1) im-
ages the central part of the flow out of the turbulence chamber at roughly 1 to 1 magnifi-
cation. An aperture with diameter 1.3 cm is placed directly behind this lens. A 3.81 cm
acromat placed 36 cm behind the first lens magnifies this image onto the detector. Two
additional lenses follow. A 30 cm positive lens 5.4 cm after the short focal length lens
allows the short focal length lens to be operated at nearly infinite conjugate ratio. This
minimizes aberrations when an optional beamsplitter is placed between these lenses. A
50 cm negative lens is placed 18.6 cm behind the 3.81 cm lens to allow easy adjustment
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Figure 3.10: Pattern on the calibration masks.

of the magnification. The magnification of the system is 13.2. All of these components
and the detectors are mounted on an optical rail.

3.2.5 Calibration

The calibration procedure involves imaging some known calibration rule onto the detec-
tor. The strip detector requires a one dimensional pattern that is illumined with synchro-
nized AC light. An effective way to achieve this is to place a mask containing a line of
holes in the flow and illumine it with the laser beam.

The nanofabrication center at Cornell was very helpful in making masks suitable for
this purpose. The standard mask making techniques they use for lithographic masks pro-
duced excellent results. With the GCA PG3600F Optical Pattern Generator we made four
masks of the pattern shown in Fig. 3.10, each with a different magnification. They were
all made on one 5 inch blank and sawed into four plates on the diamond saw in the ma-
terials services shop. Each has 41 dots placed along a diagonal line with 8 additional
alignment dots. Each dot is an octagon, made by 4 flashes of the pattern generator. The
positioning accuracy of the pattern generator is 0.6�m, much higher than is necessary.
The dimensions of the entire pattern isa� a

p
2; which allows the mask to appear square

when viewed from a 45 degree angle. This means that the angle of the diagonal is 35.2644
degrees. The orientation marks are on the horizontal and vertical centerlines with spacing
a=4 between vertical dots anda

p
2=4 between horizontal dots. The dimensions of the

four masks are

� 3 cm: 3cm x 4.24264cm, dot diameter 150 microns, spacing 0.12990 cm

� 1 cm: 1cm x 1.41421cm, dot diameter 50 microns, spacing 0.04330 cm

� 0.5 cm: 0.5cm x 0.70711cm, dot diameter 25 microns, spacing 0.02165 cm

� 0.2 cm: 0.2cm x 0.28284cm, dot diameter 10 microns, spacing 0.008660 cm

where spacing is the distance between dots along the diagonal line.
For calibration of the high magnification setup, we placed the mask perpendicular

to the laser beam in the detection volume defined by the beam and the field of view of
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the two optical systems. A piece of opal glass was placed behind the mask in order to
scatter light to the detectors. The optical rails were on orthogonal axes and each had a
detector that could measure both the primary and conjugate signal, and so we measured
four projections of the image. The relative magnification of the two optical systems could
be found from the two vertical coordinates, but we have a better measurement from data in
which particle tracks are recorded with two detectors measuring the vertical coordinate.
This givesM 0 = 1:0106M . Then the combination of the spacing of the light spots on
the three orthogonal projections yields:M 0 = 13:266 andM = 13:127. To obtain
the calibration of strip number to position in the flow, divide the strip pitch,50�m or
100�m, by the magnification. Estimate of the magnification uncertainty based on the
uncertainty in the calibration position measurements yields 0.4%. The deviation between
the independent vertical measurements suggest that systematic effects may raise this to
about 1%.

This procedure assumes that the magnification does not change across the depth of
the illumination volume. A geometric optics simulation of the system using the gaussian
package written by Arthur La Porta shows that the magnification of our high resolution
setup varies only by�0:3% when the depth of the particle is moved by�1mm. A more
complete calibration of the optical system would involve moving the calibration mask
to measure the full mapping of actual position in the flow to measured coordinates as in
Dracos (1996). This will require a full 3D imaging system. With this kind of an approach,
much greater precision is possible since parameters such as the viewing angle and optical
distortions can be measured directly from the images.

3.2.6 Focusing

The optimal focus for the optical setup is found by taking data and measuring the width of
the light spots that are recorded. Because the illumination beam is at45Æ with respect to
the optical axis, the center of the beam is changing its distance from the optics as it moves
horizontally across the cell. In the measured data, the average width of the light spot will
be smallest at the horizontal position where the beam centerline passes through the focal
plane. By measuring the average width of the light spots as a function of position, the
direction and amount of the necessary focus adjustment can be determined.

After a rough focusing by eye, the focus is fine tuned as described above. It usually
takes two iterations of 30 minutes of data each to focus a detector. This procedure does
not work if the detector is measuring the vertical coordinate. In this case, a horizontal
detector was used for focusing and then a vertical detector was mounted in the same
place.

3.3 Large Reynolds number flow

The turbulent flow used in these measurements is a flow between counter-rotating disks.
This flow has been used by several other groups, particularly in France (Douady et al,
1991; Fauve et al, 1993; Maurer et al, 1994). Details of the geometry of the system were
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Figure 3.11: Primary modes of the mean velocity in the flow between counter-rotating
disks.

published in our first paper (Voth et al, 1998), and are reprinted here in Appendix A,
section A.1.3.

The one modification to the apparatus itself since the description in Appendix A is
that there are now 8 circular 4 inch diameter windows placed symmetrically around the
centerline of the flow. This allows imaging from two ports both at45Æ forward scattering
and entry and exit of the laser beam all through glass windows. Two removable windows
allow access to the interior of the cell for mounting calibration equipment.

The structure of the mean velocity field in the flow can be thought of as the sum of two
components, a toroidal pumping mode and a cylindrical shearing mode. Figure 3.11 gives
a schematic representation of these two modes. The resulting flow is quite complex, but
has two major advantages for Lagrangian measurements. First, the central region of the
flow has zero mean velocity which is ideal for particle tracking. Second, it can produce
large Reynolds numbers in a confined environment which allows it to meet constraints
for optical access and available laboratory space. The inhomogeneity of the flow is a ma-
jor concern. This is another reason why we have focused on acceleration measurements,
since measurements involving longer tracking times would have larger effects from the
structure of the forcing. At large Reynolds numbers, small scale quantities like the ac-
celeration should become at least partially decoupled from the large scale structure of
the flow. We do find a small dependence of the acceleration statistics on the large scale
anisotropy of the flow. In the future it will be very interesting to see similar measurements
made in other flows to study this in more detail.

The disks are driven by 2 DC electric motors each rated at 1 horsepower. Variable
speed reducers connect the motors to the disks. The rotation frequency of the motors is
feedback controlled. There is a hole in the shaft driving each disk and an infrared LED
and photodetector mounted on the housing at the same height. As the shaft turns a pulse
of light is measured on the photodetector every half turn. The frequency of this signal is
sampled with a Keithle 2001 multimeter. The master computer reads this over GPIB and
feedback controls the frequency by adjusting the the power supplies driving the motors.
When the disks are run at frequencies below 1.25 Hz, a Tektronix oscilloscope is used
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to measure the frequency since the Keithley is limited to frequencies greater than 1 Hz.
The power supplies are controlled with a voltage from an analog I/0 card in the computer.
There are four Kepco model ATE 55-10M power supplies with two in series powering
each motor. The computer code for the frequency control isturb readout .

The temperature of the system is controlled by a Tronac model PTC-36 temperature
controller. This is an analog PID controller which adjusts the power output to a heating el-
ement to minimize deviations between the measurements from its thermistor probe in the
flow and a set point. The heating element is in a water loop that circulates through the top
and bottom plates of the flow chamber. This recirculating loop also has a heat exchanger
through which building cooling water flows. Since we need a very wide dynamic range in
heating and cooling power, we manually adjust the flow rate of the building cooling wa-
ter and the power to a constant heater so that only small heat input from the temperature
controller is needed.

The turbulence chamber has a filtration loop connected to it which allows removal
of any particulate matter from the flow. A rough filter is followed by a0:45�m filter.
Running the filter system and the disks for about one day is necessary to clean the flow.
There is a steady release of very small particles into the flow from the walls,etc. These
can be seen moving through the laser beam and increase in number over a period of weeks.
They are small enough and increase slowly enough that there is a negligible contribution
to measured trajectories of50�m particles over a data run of several weeks. If particles
smaller that15�m are going to be used, this may become a significant issue. It is also
very useful to de-gas the fluid to be certain that there are no air bubbles in the flow. For
a while, this was done by raising the temperature of the system to about40ÆC and then
lowering it. More recently, a mild vacuum has been used.



Chapter 4

Particle Acceleration Measurements
with Silicon Strip Detectors

4.1 Introduction

This chapter presents the acceleration measurements we have made with the strip detector
system. After discussing the experimental procedure in section 4.2, I will discuss mea-
surements of the shape, variance, and flatness of the acceleration probability distribution
in sections 4.3 to 4.5. Measurements of the velocity and dissipation which are neces-
sary for normalization and comparison with previous work are described in sections 4.6
and 4.7. In the process of checking whether our tracer particles were small enough, we
recorded measurements of the effect of particle size on the acceleration variance which
are reported in section 4.8. Finally I address some of the sources of measurement error
and sample bias in section 4.9.

4.2 Experimental Procedure

Most of the data reported in this chapter was taken with two silicon strip detectors on
perpendicular optical systems as shown in Fig. 3.8. For most of the runs, detector MH1
was oriented to measure the horizontal position which will be labeledx, and detector
MH4 was oriented to measure the vertical position,y.

Since MH1 is a p-z detector and MH4 is a p-� detector, this combination of coor-
dinates is measured when both detectors have their long axis horizontal. This takes ad-
vantage of shape of the laser beam and should allow the two detectors to have the same
shape and dimensions of their detection volumes. Unfortunately, detector MH4 produces
a signal that is weaker than MH1 by almost a factor of 4. As a result, the detection volume
for MH4 is significantly smaller, since a smaller part of the gaussian beam has enough
illumination intensity to pass the intensity cutoff.

Two runs were taken with the detectors in different orientations to check for systematic
errors. One had both detectors measuringy. The other had both detectors measuring a
horizontal coordinate which means MH1 measuredx and MH4 measuredz.

37
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Table 4.1: Parameters for data runs measuring accelerations with the silicon strip detec-
tors.

f ~u R� � �� �
(Hz) (m/s) m2=sec3 ms �m
0.15 0.0179 140 8:13� 10�5 110 330
0.20 0.0241 160 1:97� 10�4 70.7 264
0.30 0.0364 200 6:90� 10�4 37.8 194
0.60 0.0742 280 5:76� 10�3 13.1 114
1.75 0.220 490 1:50� 10�1 2.57 89
3.50 0.440 690 1:12 0.940 30
7.00 0.869 970 9:24 0.327 18

A list of the parameters at which data was acquired is in Table 4.1.f is the rotation
frequency of the disks. The typical velocity used for scaling is~u = (huiuii=3)1=2, where
summation is implied. (Whenuz was measured it had the same variance asux, soux was
used in place ofuz in the cases whereuz was not measured.)� is the energy dissipation per
unit mass, and is determined by� = u3=L whereL = 0:071 m is measured in section 4.7.
�� = (�=�)1=2 is the Kolmogorov time scale, and� = (�3=�)1=4 is the Kolmogorov length
scale. The water temperature for all the runs was20:60� 0:03Æ C, where the uncertainty
reflects measured temperature fluctuations. The absolute temperature calibration uncer-
tainty is about0:4Æ C. The kinematic viscosity was0:989 � 0:010 � 10�6 m2=s. This
viscosity is from an interpolation of the data in the CRC Handbook of Chemistry and
Physics (Robert C. Weast, 1997), and agrees with the value measured with a viscometer
to 1%.

The tracer particles were polystyrene DVB spheres from Duke Scientific with 46.6�mmean
diameter and 6.6�m standard deviation in diameter. Their density is 1.05 g/cm3. It is
shown in section 4.8 that these particles are sufficiently small that the particle acceler-
ation variance is equal to the Lagrangian acceleration variance within the experimental
errors.

Figure 4.1 shows an example of a particle trajectory recorded with a strip detector.
The top grey scale plot shows the raw data recorded by the data acquisition system. Back-
ground grey areas were not stored by the sparsification algorithm. Other areas show the
signal voltage on that strip in grey scale. In addition to the primary track, there is a very
faint conjugate track and a few random pixels were bright enough to pass the sparsifi-
cation threshold. The track crosses a few dead pixels which are marked by no intensity
when they should be bright.

When this sequence is processed withseq track , the positions shown in the middle
plot are obtained. A list of dead pixels is used to ignore positions that are within 1 pixel of
a dead pixel, resulting in the breaks in the data. Velocities calculated from linear fits to 15
time steps (0:23��) are shown in the lower plot in Fig. 4.1. The slope of this curve appears
to be sufficiently well defined to allow accurate acceleration measurements. There is some
ambiguity though about whether some of the very fast changes in acceleration are caused
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Figure 4.1: Example of a trajectory measured by the strip detector used to obtain acceler-
ations. The disk rotation frequency is 3.5 Hz which corresponds toR� = 690. 512 pixels
corresponds to3:88mm in the flow. The readout period is14:3�s, which is a frequency
of 69,930 Hz, or 66 time steps per Kolmogorov time.
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Figure 4.2: RMS position measurement error as a function of the maximum intensity of
the trajectory in that frame. Solid line is for detector MH1. Dashed line is for detector
MH4.

by position measurement errors or by the turbulence.
For the acceleration measurements, the seed particle density was typically adjusted

so that 10% to 25% of the frames had a pixel above threshold. This was chosen as a
balance between maintaining a reasonable data rate and minimizing ambiguities caused
by multiple particles in view at once. This data set had at least one pixel above threshold
in 16.9% of the frames which resulted in 0.6% of the total data being stored.

The position measurement error can be estimated by deviations of the measured po-
sition from a fit to the trajectory. Figure 4.2 shows the rms position measurement error
as a function of the maximum intensity of the trajectory in that frame. In this case, the
fit used to determine the error was a quadratic polynomial fit to 33 time steps, or0:5��.
For the brightest trajectories, the position error is less than 0.05 pixels which corresponds
to 0:4�m in the flow. Position measurement errors in this range are common for CCD
imaging systems, for example Mann et al (1999) report measurement errors in the range
0.02 to 0.1 pixels.

Figure 4.3 shows a distribution of the measured maximum intensity. The total rms po-
sition measurement error can be calculated by summing over the data in Fig. 4.2 weighted
by the probability from Fig. 4.3. It clearly has a strong dependence on the intensity thresh-
old that is chosen. For high threshold, the measurement error is smaller, but many fewer
tracks are found and there is more likelihood of breaking up tracks. For thex data set
from MH1 with a threshold of 80 counts, the rms error is 0.083 pixels.
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Figure 4.3: Probability distribution of maximum intensity. Solid line is for detector MH1.
Dashed line is for detector MH4.

4.3 Acceleration Probability Density Function

Particle accelerations are measured by parabolic fits to the position versus time data. The
parabolic fits use the error as a function of intensity as shown in Fig. 4.2 for the measure-
ment errors. A triangle windowing function is used to weight the points at the center of the
fit more heavily. This does not seem to be essential though since a rectangle windowing
function with half the width produces results that are not significantly different.

The trajectories are sampled at equally spaced points along their length, typically with
spacing between samples of 0.1 times the total fit length. This results in a weighting of
the tracks by their residence time. Very small spacing between samples can make the
probability distributions look smooth, but has very little effect on the convergence of
moments since the samples are highly correlated.

4.3.1 Probability distribution of an acceleration component

Probability distributions of an acceleration component measured at three different Reynolds
numbers are shown in the log-linear plot in Fig. 4.4. The acceleration is normalized by the
measured rms acceleration which is discussed in detail in section 4.4. The first thing that
stands out is the long stretched exponential tails. The distributions for the three Reynolds
numbers are quite similar, although theR� = 200 data has somewhat weaker tails. The
accelerations of the two higher Reynolds numbers are measured by quadratic fits to 1
Kolmogorov time. TheR� = 200 data is from fits to 0.5 Kolmogorov times. This data set
uses0:5�� for the fit time because very few particles are tracked for1�� time at this low
Reynolds number. The effect of the shorter fit time should be to increase the strength of
the tails, so the tails are definitely weaker than at higher Reynolds number. As shown in
section 4.5, caution must be used in making conclusions that depend on small changes in
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Figure 4.4: Probability distribution of a measured acceleration component. Data is for the
x component from detector MH1. The solid line is a fit of Eq. 4.1 to theR� = 690 data.
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the tails of the distributions since the fits used to sample the accelerations do not always
fully resolve the rare events.

The solid line in Fig. 4.4 is a fit to theR� = 690 data of the function

P (a) = C exp

� �a2
(1 + ja�=�j
) �2

�
; (4.1)

with C = 0:788, � = 0:539, 
 = 1:588, � = 0:508. There are really only 2 free
parameters in the fit since the pdf must be normalized and have unity variance. The fit
was made by using a nonlinear least squares routine with 4 free parameters and then
manually adjusting the fit to satisfy the constraints, while maintaining the quality of the
fit. The flatness of the fitted probability distribution is 54.3.

Holzer & Siggia (1993) show that the acceleration (pressure gradient) distribution
should be of the form

P (a) � exp

�
�
���a
�

���1=2� (4.2)

if the velocity difference distributions are exponential. The tails of the fitted distribution
scale asexp(�jaj0:41) which is not far from this prediction. Beyonda= ha2i1=2 = 3 the
acceleration distribution can be fit just as well by a power law times an exponential as by
the stretched exponential. The fit

P (a) = Cjaj�
 exp
�
�
���a
�

���� ; (4.3)

withC = 0:221, 
 = 2:80, and� = 8:74 is indistinguishable from the stretched exponen-
tial fit above in the range3 < a= ha2i1=2 < 40. We conclude that while the data does not
uniquely determine the functional form of the pdf, Eq. 4.1 is a useful parameterization
that reproduces the experimental results well.

Figure 4.5 shows a comparison of the experimental acceleration distributions with the
results of numerical simulations by Vedula & Yeung (1999). The comparison shows good
agreement in the shape of the distribution and the trend with Reynolds number. The tails
of the distribution are becoming stronger as the Reynolds number increases reflecting
increasing intermittency.

4.3.2 Joint distribution of different acceleration components

The different acceleration coordinates measured with different detectors are not indepen-
dent. Even a visual survey of the raw data reveals that large accelerations on one detector
are correlated with large accelerations on the other. One might think that this correlation
would contain some interesting information about the structure of the rare events. It turns
out though that this correlation is primarily a result of the shape of the probability distri-
bution for a single component. In an isotropic distribution, it can be proven that the only
way that different components can be independent is for the distribution to be an isotropic
joint gaussian. For the stretched exponential observed here, the different components are
highly dependent on each other.
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If the three dimensional acceleration is isotropic, the probability distribution for an
acceleration component,f(a1), and the distribution for the magnitude of the acceleration,
g(a), are related by the following relations (Pope, 1999):

f(a1) =
1

2

Z 1

ja1j

g(a)

a
da; (4.4)

g(a) = �2a d

da
f(a): (4.5)

This confirms the intuitive notion that the joint distribution can be calculated directly from
a single component and so there is no need for measurements of the joint distribution.
The only information in the joint distribution would be anisotropic corrections. As the
moments of different components are easier to measure and contain most of the anisotropy
information, measurements of the joint acceleration distribution have not been pursued.

4.3.3 Three-dimensional reconstruction of large acceleration events.

A manual survey of the raw data of the large acceleration events gives a strong impres-
sion that the acceleration is quasi-periodic, as it would be for particles caught in vortex
structures. To study this in more detail, we took several data sets with two detectors each
measuring two coordinates. This allows all three coordinates of the trajectory to be mea-
sured, but because it uses the conjugate peaks it requires manual intervention to correctly
splice and match the tracks.

Examples of the three dimensional trajectories are shown in Figs. 4.6-4.8 These events
show a helical structure that is quite intriguing. It is worth noting that the largest acceler-
ation along the track in Fig. 4.6 is 16,000 m/s2. Color plots of these three dimensional tra-
jectories are available on the turbulence group web pages: http://milou.msc.cornell.edu/turbulence.html.

Measurements such as those shown in Fig. 4.6 offer new possibilities for addressing
questions about the structure of violent rare events and their contribution to small scale
intermittency. Modeling of the detection process will be necessary to make precise state-
ments about the fraction of the large acceleration events that have this helical structure
since helical events are likely to stay in the detection volume longer than events with
more linear acceleration.

4.4 Acceleration Variance Measurements

A primary concern in measuring accelerations is to determine whether the time span used
in the quadratic fits is long enough to eliminate contributions from measurement error and
still short enough not to average over the structure of the true trajectory. To examine this,
the acceleration variance is calculated as a function of fit length. A plot of this function
is shown in Fig. 4.9. Both axes have been normalized by Kolmogorov variables. The fit
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Figure 4.6: Three-dimensional time resolved trajectory showing very large acceleration.
This data was taken at a disk frequency of 8 Hz which isR� = 1030. The Kolmogorov
scales are� = 16�m and�� = 0:268 ms. The spherical markers are equally spaced in
time with 8 frames between them.
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Figure 4.7: Another large acceleration event showing four particles. The grey scale labels
time along the trajectory. Parameters are the same as in Fig. 4.6.

Figure 4.8: Same event as Fig 4.7 from a different angle.
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Figure 4.9: Measured acceleration variance as a function of fit time.R� = 690, fre-
quency=3.5 Hz,x coordinate with MH1.

time is in units of the Kolmogorov time scale, and the acceleration variance is normalized
to give the Kolmogorov constanta0 defined by

a0 =
ha2�i

�3=2��1=2
; (4.6)

wherea� is an acceleration component and no summation over indices is implied. The
measurement errors in this plot were determined by dividing the data set into six subsets
and taking the standard deviation of the results from different subsets divided by the
square root of six.

The sharp turn up for times less than 1�� is a result of position measurement error.
The slow fall off at longer times is at least partly a result of the fits averaging over the true
trajectories. This identification of where position measurement error becomes important
is confirmed in section 4.9.1 using two detectors measuring the same coordinate. It can
be seen that there is no plateau in the fit time during which the measurement error is
negligible and yet the trajectories are fully resolved.

Figures 4.10 shows log-linear plots of the acceleration variance as a function of the
number of points used in the fit for several different data sets ranging fromR� = 140 to
R� = 970. This data is for thex acceleration measured with detector MH1. Similar plots
for they accelerations taken with detector MH4 are shown in Fig. 4.11. Naive applica-
tion of the Kolmogorov hypothesis implies that these curves should all have a universal
form when the Reynolds number is high enough and position measurement error is not
important. This follows if the acceleration, a small scale quantity, only depends on the fit
time which is on the order of the Kolmogorov time. For the higher Reynolds numbers the
curves are quite similar, but the low Reynolds numbers are very different. This is partly
a result of the Reynolds number not being high enough. However, an additional reason
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Figure 4.10: Log-linear plot of the horizontal acceleration variance as a function of fit
time. The lowest Reynolds number is at the lower left. Curves move up and to the right
as the Reynolds number increases. Shown areR� = 140, 200, 280, 490, 690, and 970.
This data was taken with detector MH1.
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Figure 4.11: Log-linear plot of the vertical acceleration variance as a function of fit time.
The lowest Reynolds number is at the lower left. Curves move up and to the right as the
Reynolds number increases. Shown areR� = 140, 200, 280, 490, 690, and 970. This
data was taken with detector MH4.
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Figure 4.12: Acceleration variance for all data sets versus rms velocity,~u. This is thex
data from detector MH1. The solid line is the K41 predictionha2i � ~u9=2.

that the Kolmogorov hypotheses do not fully apply is that this data shows a significant
correlation between the time a particle is tracked and its acceleration. This is discussed in
more detail in section 4.9.3, but the simple picture is that large acceleration causes large
enough change in velocity to change the tracking time. This means that the ratio of the
detection volume to�3 enters as another parameter and the curves should not be universal.
As discussed in section 4.9.3, this effect should go away in the limit of short fit times.

Since the curves in Figs. 4.10 and 4.11 are approximately exponential over much of
the range that they are measured, we decided to use an exponential extrapolation back to
zero fit time as the value of the acceleration variance. The range of fit time from 1 to 4��
was used for the exponential fit. This almost certainly overestimates the true acceleration
variance since this curve must have zero slope at the origin if the trajectories have a
continuous third derivative. However, the amount of the extrapolation is in all cases less
than 30%, and is usually 10% to 20%, so the overestimate must be less than this.

Figure 4.12 shows the extrapolated value of the acceleration variance versus the rms
velocity for thex data from detector MH1. Using� = ~u3=L, K41 predicts that the
acceleration variance will be

ha2�i =
a0u

9=2

L3=2�1=2
(4.7)

Over the upper range of disk frequency, the data shows very good agreement with the K41
u9=2 scaling over several orders of magnitude in the acceleration variance. At the lower
velocities there is a small but significant deviation.

Figure 4.13 contains some of the primary results of this study. It shows the measured
value ofa0, which is the acceleration variance normalized by Kolmogorov variables. Data



51

0 500 1000
0

2

4

6

a 0

Rλ

Figure 4.13:a0 for all data sets as a function ofR�. Squares arex data from MH1.
Circles arey data from MH4. Error bars represent uncertainty in the extrapolation to zero
fit time. Grey triangles arez data from MH4. Grey diamond isy data from MH1. Crosses
are DNS data from Vedula & Yeung (1999).
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for both thex andy acceleration are shown. At the larger Reynolds numbers,a0 is nearly
constant. At lower Reynolds numbers, it is significantly smaller. The value ofa0 where it
is constant is in the range of 5 to 7. The data for thex andy accelerations show a similar
trend, but they acceleration variance is smaller by 15% to 20%.

A central question is whether this difference is caused by an anisotropy of the accel-
eration or whether it is affected by systematic errors. To study this, three data sets were
taken atR� = 690 with the detectors rotated to measure different coordinates. The re-
sults for thez acceleration with detector MH4 (grey triangles) and they acceleration with
MH1 (grey diamond) are shown in Fig 4.13. (Because of the cylindrical symmetry of the
flow, thex andz statistics should be identical, and we find this to be very nearly the case
for velocity statistics.) The data from the rotated detectors suggests that the difference
between coordinates may be smaller than the first data shows. They data from detector
MH1 is slightly although not significantly larger that the data from MH4. Thez data sets
from MH4 are both smaller than thex data from MH1. Thez data is probably the most
questionable, since the detection volume for MH4 is extremely small when it is rotated.
Although some of the discrepancy is due to the detector and detection geometry, there is
still a systematic difference between the two coordinates.

Figure 4.14 shows thex data from Fig. 4.13 along with estimates of the systematic
errors. This displays statistical errors and the estimated limits of the important systematic
errors. Statistical errors are clearly negligible. Systematic errors due to the uncertainty in
the energy dissipation cause a 15% uncertainty in the high Reynolds number value ofa0.
Lower limits of possible systematic errors due to extrapolation are shown. Judging from
the curvature of the data in Fig. 4.10, the actual acceleration variance is likely closer to
the extrapolated value than to the lower limit.

The primary conclusion we draw from this data is that whilea0 is increasing at lower
Reynolds numbers, it has flattened out aboveR� = 400. This measurement of the turn
over froma0 increasing withR� at smallR� number to nearly constant at largeR� is
fairly convincing evidence that at large Reynolds numbersa0 scales more like the K41
prediction than theR1=2

� seen in the simulations (Vedula & Yeung, 1999). More modest
intermittency corrections may still exist.

Another conclusion is that the anisotropic structure of our flow between counter-
rotating disks seems to have significant effect on the acceleration variance out toR� =
970. Even where the value ofa0 is not changing with Reynolds number, the different
coordinates are significantly different. This could draw into question the previous con-
clusion since it is possible that a peculiarity of the large scale structure of this flow results
in the constant value ofa0 that we see, and different flows would be different. As noted
by Nelkin & Chen (1999), the longitudinal velocity derivative flatness in a flow between
counter-rotating disks has been observed to have a plateau in this same range of Reynolds
numbers (Belin et al, 1997; Sreenivasan & Antonia, 1997). The deviation between the
two coordinates is small enough compared to the deviation from theR

1=2
� scaling that it

seems unlikely that the existence of the plateau is caused by the large scale structure of
the flow, but only measurements in other flows can confirm this. It is quite possible that
smaller intermittency corrections such as those described in sections 2.2 and 2.3 could be
affected by the flow structure.
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function ofR�. Points connected by the solid line are the same data as Fig. 4.13. The
error bars on these points are the measured statistical error in the acceleration variance at
1��. These are the uncertainties shown in Fig. 4.10 at a fit time of1��. � labels the value
of the acceleration variance at the shortest fit time which had negligible contribution from
position measurement errors. This gives the lower limit on the possible systematic error
due to extrapolation. Grey triangles represent the values ofa0 andR� that result from
using values of� at either end of its 10% uncertainty.
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4.5 Acceleration Flatness Measurements

The probability distributions of acceleration shown in Fig. 4.4 suggest that studying the
change in flatness with Reynolds number would be an effective way to characterize the
intermittency in the flow. The measured flatness for several Reynolds numbers is shown
as a function of the fit time in Fig. 4.15. In the low Reynolds number range, there is a
trend toward higher flatness as the Reynolds number increases. Here the problem of no
plateau as a function of fit length is even more severe than for the variance, so no attempt
is made to extrapolate to identify the true value of the flatness. Fig. 4.16 shows the flatness
for all data sets measured with fits over 1��. The flatness increases withR� at lowR�,
but the measurements at largerR� are not reliable enough for conclusions to be drawn.
In addition to the fit time problem, the particle size has not been shown to be sufficiently
small to accurately measure the rare violent events that dominate the flatness.

The main conclusion we draw here is that the flatness factors are very large. For the
largerR� the true flatness must be greater than 50, which is considerably larger than the
flatness of any other small scale statistics at these Reynolds numbers. This may partially
explain the anisotropy of the acceleration variance observed in the previous section. The
small scale quantity with the next largest flatness is the passive scalar, which is found to
be anisotropic even at very large Reynolds numbers Warhaft (2000).

Statistical convergence is a major problem for distributions with flatness of order
50. An exploration I made to clarify some of the issues of convergence is described
in Appendix B. Figure 4.17 shows the probability distribution multiplied bya4 for the
R� = 690 data set and for the stretched exponential fit. The area under these curves gives
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Fig. 4.4. The solid line is the fit in Eq. 4.1.
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Figure 4.18: RMS velocity vs disk frequency. Each point has error bars representing the
random error. The upper data is the horizontal,x, coordinate and the lower data is the
verticaly, coordinate. Linear fits to each data set are shown.

the fourth moment, and the scatter is often used to determine the level of convergence of
the moment. I find though that the only way to accurately estimate convergence is to di-
vide the sample into subsets and look at the deviations between subsets, which is how the
errors in Fig. 4.15 were determined. I can greatly increase the smoothness of the pdf and
hence improve the appearance of Fig. 4.17 by decreasing the spacing between samples
along the tracks. The error bars in Fig. 4.15 show no significant change though because
the new samples are highly correlated.

4.6 Velocity Measurements

Accurate measurements of the velocity distribution in the flow are important for deter-
mining the Reynolds number and normalizing various quantities. They also allow in-
sights into the level of anisotropy of the large scales. Measurements of the rms velocity
as a function of disk frequency are shown in the log-log plot in Fig. 4.18. Linear fits are
shown withhu2

xi1=2 = 0:1386f andhu2
yi1=2 = 0:0872f which match the data very well.

These fits imply~u = (huiuii=3)1=2 = 0:1238f . This scaling was seen in the earlier mea-
surements with the position sensitive photodiode, but the constants measured then were
hu2

xi1=2 = 0:1233f andhu2
yi1=2 = 0:0829f , and~u = 0:1115f . This discrepancy is not

fully explained. The most natural explanation would be that the larger particles in the
earlier experiments gave smaller velocities, but the data for large tracer particles taken
with the strip detector do not show this effect.

Figure 4.19 shows the RMS velocity divided by the linear fit in order to clearly show
deviations from the fit. Deviations of up to 5% are visible. These may be real deviations
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Figure 4.19: RMS velocity divided by the linear fit as a function of disk frequency.
Squares areux, circles areuy.

from the linear model, but as discussed in section 4.9.2 there are probably systematic
errors in the velocity measurements that are of this order.

Linear and logarithmic plots of the velocity probability distribution are shown in
Fig. 4.20. The dip in the center of the velocity distribution is concerning. It is most
pronounced on detector MH4 and at large disk frequencies. As will be discussed in more
detail in section 4.9.2, it appears to be caused by sample biases from the ac coupling of
the detectors and from tracks disappearing behind dead pixels.

The logarithmic plot of the probability distribution in Fig. 4.20, and measurements of
the flatness of the velocity distribution shown in Fig. 4.21 reveal an interesting effect. The
flatness of both thex andy components are independent of disk frequency and signifi-
cantly different than the gaussian value of 3, with flatness ofux equal to 2.75 and flatness
of uy equal to 3.35. The results are unchanged when the detectors are rotated as shown by
the multiple points at frequency of 3.5. Velocity distributions far from the walls of turbu-
lent flows are usually nearly gaussian. Slightly subgaussian tails on velocity distributions
have been observed by Noullez et al (1997) in a jet flow and Jimenez et al (1993) in a
homogeneous numerical simulation. Both groups report velocity flatness of 2.80. One
would expect that the velocity flatness depends on the details of the large scales of the
flow. In our flow, the flatness of the component with the smaller rms is larger than gaus-
sian and the flatness of the component with the larger rms is subgaussian. The orientation
of the mean strain could also be a factor.
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Figure 4.21: Velocity flatness vs disk frequency.

4.7 Dissipation Measurements

The energy dissipation was determined by measurement of the transverse second order
velocity structure function, defined by

DNN (r) = h(u?1 � u?2)
2i; (4.8)

wherer is the separation distance of two particles andu?1 andu?2 are the velocity com-
ponents perpendicular to the separation vector. In the inertial subrange, K41 theory pre-
dictsDNN (r) =

4
3
C2(�r)

2=3, whereC2 is a universal constant. Many measurements have
found this to be an accurate description and the constantC2 to be equal to 2.13 (Sreeni-
vasan, 1995). Measurement ofDNN(r) requires transverse velocity differences to be
measured for pairs of particles as a function of 3D particle separation distance.

In order to measure particle separations in the inertial subrange the detector was re-
configured to have a field of view of 30 mm� 15 mm. The flow was illuminated by a
thin light sheet 15 mm high and 0.1 mm deep, incident on the detection volume at45Æ

with respect to the optical axis of the detector. The flow was seeded with a high density
of 46 �m particles. These measurements were performed when only one detector was
available, and sox positions were determined from positive primary peaks andy posi-
tions were determined from negative conjugate peaks of a p-z detector. An example of a
sequence of the raw data is in Fig. 4.22. Oncex andy coordinate trajectories were iden-
tified, the coordinate matching was performed by searching forx–y trajectory pairs with
maximum temporal correlation of the intensity. Correlation thresholds were imposed to
exclude ambiguous trajectories.

Using the constraint that particles must lie in the light sheet to be visible, the 3D
particle coordinates were determined from the 2D position measurements, allowing par-
ticle separations to be measured over the range 1–30 mm. The particle trajectories were
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also used to measure the projection of the velocity vectors on the detector image plane.
Despite the fact that the velocity differences and particle separations are measured in dif-
ferent planes, a transverse velocity component can be measured for any visible particle
separation. Because of the shape of the detection volume, this measurement is statistically
weighted towards vertical velocity differences for horizontally displaced particles.

The structure functions which were measured for disk frequency of 5 Hz and 2.5 Hz
are shown in Fig. 4.23. They exhibit anr2=3 scaling region of about 1–10 mm for the 5
Hz data and 2–10 mm for the 2.5 Hz data. The scaling region is limited at larger by the
integral length scale, and at smallr by velocity uncertainty and particle localization in the
light sheet. When the structure functions were fit to the function�r� it was found that
� = 0:66� 0:04. However, the energy dissipation was determined using fixed� = 2=3.
The dependence of� on the rms velocity is found to be consistent with relation� = ~u3=L,
and gives an effective integral scale ofL = 71� 7 mm.

4.8 Acceleration of finite size spheres in turbulence

To measure how accurately the tracer particles represent the accelerations of fluid parti-
cles, we performed a series of runs with different sphere sizes and different fluid densities.

As discussed in Chapter 2, a large amount of work has been done on the motion of par-
ticles in turbulence when the particle diameter is much smaller than the smallest scales
of the flow. In this limit, there can be no difference between the fluid velocity and the
particle velocity unless their densities are different. When the densities are different, a
rich variety of effects are observed which are the subject of ongoing research (Kim et al,
1998). However, we find that we are operating in a regime very far from the small par-
ticle limit which is traditionally studied. Our measurements show that the small density
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Figure 4.23: Transverse structure functions and the fits used to determine the energy
dissipation.

difference between the polystyrene particles and the water produces a negligible effect on
particle accelerations relative to the effect of particle size. Roughly, this can be thought
of as a regime where the particle averages over the spatial structure of the acceleration
field rather than the regime where a particle responds to a uniform acceleration field with
different acceleration than the fluid. Theoretically, this is a much more difficult regime to
analyze. Developing a phenomenological understanding of particle motion in this regime
is important both as an interesting problem in its own right and as a step toward optimizing
Lagrangian particle tracking experiments.

The measurements presented throughout this chapter so far have been from46�7 �m
polystyrene spheres of density 1.05g=cm3: To study the particle size effects, we also
made measurements of accelerations of polystyrene spheres with diameter24 � 3 �m,
136� 14 �m, and467� 18 �m. All spheres were purchased from Duke Scientific. The
smaller spheres were purchased with the given diameter and standard deviation. The
467 �m spheres were from a 425 to 500�m sieve cut from a batch with wider size
distribution. The 25�m diameter measurements required decreasing the illumination
volume in order to obtain sufficient light. All the data for the particle size studies were
acquired at disk frequency of 7.0 Hz, which hasR� = 970 and� = 18�m.

The acceleration variance from these measurements is shown in Fig 4.24. A 70%
change in the measured acceleration variance is observed between the small particles
and the 467�m particles. However, the trend shows that the 46�m particles have an
acceleration variance that is within the measurement error of the zero size limit. If a
simple straight line fit is made, the value of the acceleration variance for 46�m particles
is within 10% of the zero size limit.

It should be noted that there are different ways to define the sample over which to
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Figure 4.24: Normalized acceleration variance as a function of tracer particle diameter.

measure the acceleration variance when the particles are not fully following the flow. Our
measurements are taken over all particles that enter the detection volume. This provides
the actual acceleration distribution of the particles in the flow, but it is different from the
distribution of accelerations of particles uniformly distributed in the flow. This is because
their relative motion with the fluid can cause particles to collect or be repelled from certain
structures in the flow.

The effect of density difference was explored by changing the density of the water
by adding sodium chloride. These measurements were made with 467�m particles. The
procedure was to take a set of acceleration measurements, then drain 200 mL of fluid
into a volumetric flask which was weighted to measure the density. The viscosity of each
solution was also measured with a Cannon-Fenske viscometer. The density was then
increased by adding high purity NaCl to the flow and the process repeated. The range of
density was 0.997g=cm3 to 1.102g=cm3 which corresponds to the NaCl concentration
ranging from 0% to 14% by weight. Higher concentrations were not used since this
already required about 14 kg of pure salt and visible corrosion was beginning at weak
places in the anodized aluminum of the apparatus. At each different salt concentration, the
optical system was adjusted slightly to maintain focusing when the index of refraction of
the water changed. The magnification changes this caused were calculated and corrected
even though they were small (1.2%). Because of the viscosity change, the Reynolds
number changes slightly as salt is added. The viscosity increased by 20% over the range
studied, which results in a 10% change inR�.

Figure 4.25 shows the normalized acceleration variance of 467�m polystyrene spheres
as the fluid density was varied so that the tracer particles went from 5% below neutrally
buoyant to 5% above neutrally buoyant. As expected, there is a trend toward higher ac-
celeration variance when the particles are less dense than the fluid. However, the primary
information in this data is that the total change in normalized acceleration across this
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Figure 4.25: Normalized acceleration variance for 467�m polystyrene spheres as a func-
tion of fluid density. The density of the particles is1:05� 0:01g=cm3:

range of density is 0.8 which is only 12% of the value of 6.5 which is measured for small
particles. If smaller particles were used, the change in acceleration due to this density
change should be even smaller.

We conclude that the density difference between the fluid and the particles does not
have a large effect on the data in Fig. 4.24. Thus we expect that in this density range,
the only important parameter in determining how small particles need to be to accurately
reproduce the acceleration of fluid particles is the ratio of the particle size to the Kol-
mogorov length. Fig. 4.24 shows that the 46�m particles are small enough for accelera-
tion variance measurements.

Fig. 4.26 shows the probability distribution of the acceleration for different particle
sizes and fluid densities. Fig. 4.26A is the raw distributions, and Fig. 4.26B has the hor-
izontal axis normalized by the measured standard deviation. Figure 4.26A shows the
differences in the variance which were seen earlier in Fig. 4.24. Fig. 4.26B reveals the
somewhat surprising result that the shape of the probability distribution is not strongly af-
fected by particle size. There is a slight tendency for the distributions for larger particles
to have weaker tails but it is not a large effect. The distributions for the larger particles are
only resolved out to about 10 standard deviations, compared with the more than 20 stan-
dard deviations resolved in Fig. 4.4. It would be interesting to take much more data with
the larger particles to determine whether particle size affects the shape of the distribution
far out in the tails.
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Figure 4.27: Normalized variance of the acceleration and difference in the measured ac-
celeration between two different detectors as a function of the time span of the fit. Both
detectors are measuring they coordinate of the same trajectories. The disk frequency for
this run is 3.5 Hz which isR� = 690.

4.9 Measurement Errors

4.9.1 Effect of position measurement errors

In interpreting the acceleration measurements from the strip detector, it has been essential
to clarify what effect position measurement error has on the data in Fig. 4.9. The first
check we performed was to decrease the frame rate. This resulted in the sharp turn up
below 1�� moving to the right but the rest of the curve remaining unchanged. This led us
to believe that the position measurement error did not have significant contribution to the
part of the curve above 1��.

When two detectors became available we made a more sensitive test by comparing
the accelerations measured by different detectors on different optical axes. In this setup,
both detectors measured the vertical coordinate of the trajectory. Figure 4.27 shows a
plot of the acceleration variance versus the time span of the fit. The upper two curves
show the acceleration variance from each of the two detectors. The lower curve shows
the variance of the difference between the acceleration measured from different detectors.
This confirms the interpretation that beyond 1�� the measured variance is dominated by
actual accelerations of the turbulence.

To estimate the signal to noise of the acceleration measurements, I assume that the
measurement errors of the two detectors are identical, independent, and gaussian dis-
tributed. Then the rms measurement error of one detector is the rms of the difference
divided by

p
2. At 1 �� the ratio of the standard deviation of the measured acceleration to

the measurement error on one detector is 7.3.
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Figure 4.28: Joint probability distribution of the peak intensity of the trajectory and veloc-
ity. Greyscale is probability with white designating maximum probability. This is from
theR� = 970 data set fory data from detector MH4.

4.9.2 Velocity sample bias

There are several ways in which velocity sample bias can occur in the strip detector data.
If the detectors measure the velocity of all particles for the full time they are in the de-
tection volume, then residence time weighting yields an unbiased velocity sample. Any
trajectories whose velocities are not measured while they are in the detection volume can
produce a sample bias unless the drop outs are uncorrelated with velocity.

The velocity distributions for large disk frequencies that are shown in Fig. 4.20 show
a dip in the center that is unexpected. The primary cause of this has been identified as
a sample bias caused by the ac coupling of the amplifiers connected to the strips of the
strip detector. Evidence of this is seen in Fig. 4.28. This plot show the joint probability
distribution of the intensity of the trajectory and its velocity. When a trajectory has nearly
zero velocity, it remains on the same strip for many clock cycles. The ac coupling capac-
itor then slowly drifts to the mean of the signal. The measured intensity is then decreased
by the difference between the mean and the instantaneous current from the detector. This
causes zero velocity events to be less likely to be detected, and results in the dip in the
probability distribution.

Another way in which the measured signal from the strip detector can depend on the
velocity is if the particle moves significantly during the illumination pulse. At the large
disk frequencies where this is a problem, the illumination pulse is on for 5.0�s out of the
14.3�s frame readout period. If the light spot is only allowed to move 2 pixels during



67

0 2 4
0.6

0.8

1.0

1.2

total track time, t/tη

(<
(a

   
 t)

 >
/<

a 
 >

)
|2

2
1/

2

Figure 4.29: Standard deviation of the acceleration conditional on the total time the track
was in view.

the illumination time, the velocity must be kept below 5.7 pixels per time step. The rms
velocity in all the runs reported here was less than 2.3 pixels per time step, but in data
set with highest rms velocity there were samples out to 6 pixels per time step. I have not
found a way to unambiguously determine the importance of this effect, but it may be the
reason the data set with the highest velocity in pixels per time step is slightly different
than the others. (This is they data at 7 Hz,R� = 970, taken with detector MH4).

Care must be taken in sampling trajectories that cross over dead pixels in order to
avoid sample bias. Our first analysis approach was simply not using samples when the
trajectory was on a dead pixel. This produced a significant bias, which was evident in
holes on the sides of the velocity distributions. These resulted from the correlation be-
tween the time the trajectory took to cross a dead pixel and its velocity. This problem was
mostly solved by interpolating the velocity to ensure sampling even when the trajectory
disappeared on a dead pixel. The effect of dead pixels at the beginning and end of tra-
jectories still can not be corrected, but this is a much smaller effect. There may also be
a contribution to the dip at zero velocity from the fact that zero velocity tracks will not
be as likely to be spliced back together when they cross dead pixels, and thus can not be
interpolated.

4.9.3 Acceleration sample bias

This is a subject which our group is still working to understand, but I will present the
clues we have at this point. The data shown in Figs. 4.10 and 4.11 suggests that there is
a significant dependence of the residence time of a track on its acceleration, particularly
for low Reynolds numbers. Figure 4.29 provides a confirmation of this dependence by
showing the rms acceleration conditional on the total time of the track. In the ideal situ-



68

-4 -2 0 2 4

1.0

1.5

2.0

u /<u  >2 1/2

(<
(a

   
 u

) 
>

/<
a 

 >
)

|
2

2
1/

2

Figure 4.30: Standard deviation of the acceleration conditional on the velocity. Circles
areR� = 970, Crosses areR� = 200, solid line is from numerical simulations by Yeung
(2000) atR� = 235.

ation in which all particles are tracked for the full time they are in the detection volume,
residence time weighted sampling will give an unbiased sample of any statistic defined
at a single point in time (Buchave et al, 1979). This can be understood as follows. If
the seeding is truly random then any particle is equally likely to be marked. If the flow
is homogeneous across the detection volume and statistically stationary, then sampling
each particle while it is in view is identical to sampling all particles all the time. On the
other hand, statistics that depend on a time span along the track are not sampled correctly
by residence time weighting. For example, some types of events may never stay in view
over the time span of interest, and so can not be sampled. Thus the shape of the curves
of acceleration variance versus fit time can have non-universal dependence on the large
scale in the flow while they still extrapolate back to the correct acceleration variance at
zero fit time. Great care is going to be required to accurately deal with this effect when
measuring Lagrangian velocity structure functions.

Another even more interesting perspective on this issue is given by Fig. 4.30 which
shows the rms acceleration conditioned on the measured velocity for the runs atR� = 200
andR� = 970, and also from DNS data by Yeung (Yeung, 2000). When normalized by
the rms acceleration and velocity, the curves are nearly collapsed. They show clearly
that the acceleration standard deviation is larger at large velocities. The notion of a fully
developed turbulent cascade implies that small scale quantities like the acceleration are
independent of large scale quantities like the velocity. But this plot shows a significant
correlation between the acceleration and the velocity. Surprisingly, the correlation does
not seem to be smaller at larger Reynolds numbers.

An analogous effect has been observed by Sreenivasan & Dhruva (1998) where a
correlation between spatial velocity differences and the velocity is studied. This data is
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from atmospheric turbulence with Reynolds number up toR� = 20; 000. Since numerical
simulations and grid turbulence experiments do not show a similar correlation, it was con-
cluded that the correlation is caused by the large scale shear in the atmospheric boundary
layer.

For the acceleration-velocity correlation we find the situation to be quite different.
The strong correlation of high acceleration with high velocity is seen even in isotropic
simulations, so it can not be simply a shear effect. It may be a result of the kinematic
coupling of the velocity and acceleration. If the acceleration follows the K41 prediction
as we observe at large Reynolds numbers, then an rms acceleration produces a velocity
change of

p
a0u� in 1 ��:

Æu = ha2�i1=2�� = (a0�
3=2��1=2)1=2�� = a

1=2
0 u�: (4.9)

Since

u�
u

=
151=4

R
1=2
�

(4.10)

the fractional change in velocity is

Æu

u
=

a
1=2
0 151=4

R
1=2
�

: (4.11)

Even atR� = 1000 this implies that the fractional change in velocity due to an rms ac-
celeration over 1�� is 15% if a0 = 6. Since the temporal acceleration autocorrelation
function of an acceleration component falls to zero in about 2�� (Yeung & Pope, 1989),
1 �� is an appropriate time to use in this context. The acceleration probability distribution
shows contributions to the variance from accelerations out to 10 times the rms, so there
are significant numbers of trajectories whose velocity changes by more than 1 rms veloc-
ity over 1 ��. This must result in a velocity-acceleration correlation. It is not yet clear
why the correlation is unchanged when the Reynolds number is changed. This effect is
dramatically demonstrated by the rare event in Fig. 4.6. A more careful exploration of the
acceleration-velocity correlation could be a fruitful avenue for future exploration. It may
be that this is part of the explanation for why larger Reynolds numbers are required for
even approximate K41 scaling to be observed in Lagrangian and pressure statistics than
in Eulerian spatial velocity differences.

The exploration of the correlation of the acceleration with the tracking time and the
velocity highlights some issues of acceleration sampling bias that need to be kept in mind
when interpreting particle tracking data. They should not directly affect the acceleration
variance measurements since these correlations should cause not sample bias in the limit
of zero fit time. They must be considered though because they allow any of the velocity
sample biases from section 4.9.2 to indirectly affect the acceleration samples. They also
have significant effect on any multi-time statistics such as the acceleration as a function
of fit time.



Chapter 5

Conclusions

One of the major conclusions of this thesis is that precise experimental Lagrangian mea-
surements are possible, even at Reynolds numbers up toR� = 1000. A first round of
experiments measuring particle trajectories with a position sensitive photodiode demon-
strated the feasibility of particle tracking acceleration measurements. The second gen-
eration system based on silicon strip detectors has obtained a factor of 25 higher light
sensitivity and a factor of 10 smaller position measurement error than the position sen-
sitive photodiode. In addition it has the ability to track up to about four particles at one
time. Using this system we have obtained a position dynamic range of over 5000:1 at a
frame rate of 70 kHz.

Many issues of experimental technique for particle tracking in turbulence have been
addressed. An optical system with forward scattering geometry has been developed which
allows measurement of all three position components. The 46�m polystyrene DVB
spheres we used were found to be sufficiently spherical and to have high enough sur-
face quality to allow positioning accuracy of 1% of their diameter. We have found that
spherical tracer particles with particle-fluid density difference less than 5% have an accel-
eration variance that is within 10% of the small particle limit when the particles are2:5�
in diameter. In the range of particle size and density studied, it is primarily the particle
size rather than the density that is causing the particles to have different acceleration than
a fluid element.

The strip detector system has allowed measurements of the fluid particle acceleration
variance in a flow between counter-rotating disks with140 < R� < 970 with an accuracy
of about 10%. It has been found that in this flow over this range of Reynolds number,
the normalized acceleration variance,a0, increases with Reynolds number up to about
R� = 400 and then becomes nearly constant at the higher Reynolds numbers. The two
different acceleration components have variances that differ by 15% even at the highest
Reynolds numbers.

We conclude thata0 turns over from theR1=2
� scaling seen in DNS forR� < 235

(Vedula & Yeung, 1999) to a much weaker trend aboveR� = 400. There is still a possi-
bility that this turn over is a feature of the flow between counter-rotating disks and not a
universal feature of turbulence. Measurements in other flows will be necessary to check
this possibility. The measurements are not accurate enough to determine whether weaker
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Reynolds number trends exist, such as theR0:13
� predicted by Borgas (1993) using a La-

grangian multifractal model.
The acceleration probability distribution is found to have very strong stretched ex-

ponential tails and a flatness above 50, which means it is significantly more intermittent
than other small scale quantities. This may be connected to several of the other obser-
vations. It may partially explain the lack of isotropy since other small scale quantities
with large flatness such as the passive scalar gradient show deviations from isotropy at
these Reynolds numbers (Sreenivasan, 1991). It may also be connected to the relatively
high Reynolds numbers at which the acceleration variance turns over toward approximate
K41 scaling. The large intermittency of the acceleration may require a larger separation
of length scales before an equilibrium cascade can exist. For comparison,� � u3=L is
valid for R� > 50 (Mydlarski & Warhaft, 1996), while�1=2 ha2i � (u3=L)

3=2 requires
R� > 400.

We have identified some of the sample bias and other systematic errors that affect
particle tracking experiments. Of particular interest is the strong acceleration-velocity
correlation even at the largest Reynolds number studied. Careful attention to these issues
will be required when measuring multi-time quantities from particle tracking experiments.

It is my hope that this work will be seen as a demonstration that the measurements
necessary to explore the high Reynolds number Lagrangian properties of turbulence are
possible. Many more issues remain to be explored with particle tracking experiments.
These include inertial time range scaling of Lagrangian velocity differences, two particle
dispersion, and the time evolution of multi-particle velocity differences.



Appendix A

Our First Measurements of Lagrangian
Accelerations

This appendix is primarily comprised of the first paper we published during my graduate
studies. It is entitled ”Lagrangian acceleration measurements in high Reynolds number
turbulence” and was published inPhysics of Fluids, 10:9, 1998, p. 2268–2280. The
measurements in this paper were made with a position sensitive photodiode. At the end
of this appendix is a discussion of the ways in which much the higher resolution data that
has been recently obtained from the silicon strip detectors has led us to reinterpret some
of this data.

A.1 Lagrangian acceleration measurements with a posi-
tion sensitive photodiode

A.1.1 Abstract

We report experimental measurements of Lagrangian accelerations in a turbulent water
flow between counter–rotating disks for Taylor Reynolds numbers900 < R� < 2000.
Particle tracks were recorded by imaging tracer particles onto a position sensitive photo-
diode, and Lagrangian information was obtained from fits to the position versus time data.
Several challenges associated with extracting Lagrangian statistical quantities from parti-
cle tracks are addressed. The acceleration variance is obtained as a function of Reynolds
number and shows good agreement with Kolmogorov (’41) scaling. The Kolmogorov
constant for the acceleration variance is found to bea0 = 7� 3:

A.1.2 Introduction

An understanding of Lagrangian statistics is of great importance in the ongoing effort to
develop both fundamental and practical descriptions of turbulence. This was recognized
already by G.I. Taylor Taylor (1921) in his seminal paper on turbulent diffusion, but
almost no studies of Lagrangian turbulence quantities at large Reynolds numbers have
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been performed. The primary reason for this has been the lack of tools for measuring or
calculating Lagrangian statistics at large Reynolds numbers.

From a fundamental point of view, high Reynolds number Lagrangian turbulence data
is needed to provide a new perspective from which to judge Kolmogorov’s 1941 the-
ory. A host of practical applications follow from the connection to turbulent diffusion.
Lagrangian stochastic models are widely used for simulating turbulent flows in which
transport is of primary interest. Examples include turbulent combustion (Pope, 1985) and
pollutant transport in the atmosphere (Weil et al, 1992). These models are often applied at
Reynolds numbers much larger than existing data, and so model constants are unknown.

Determining particle accelerations in a turbulent flow has long been recognized as
a difficult problem. At large Reynolds numbers, particles are typically moving at high
speeds along erratic trajectories whose accelerations are only correlated over times on
the order of the Kolmogorov timescale (Yeung & Pope, 1989). In this situation, accu-
rate acceleration measurements require high resolution, extremely high speed imaging
equipment. Previous work had typically relied on pixel based video photography, and
this resulted in pessimism about ever being able to measure the small scale Lagrangian
properties of high Reynolds number turbulence (Nelkin, 1994)

In this paper we present experimental particle tracking measurements in a flow be-
tween counter-rotating disks for Taylor Reynolds numbers900 < R� < 2000; an order
of magnitude higher than previously possible. We recorded particle tracks by imaging
tracer particles onto a position sensitive photodiode, and obtained data with sufficient
spatial and temporal resolution to measure accelerations. We report data on the velocity
and acceleration statistics and discuss challenges in the data analysis. Our results for the
acceleration variance as a function of Reynolds number are in excellent agreement with
Kolmogorov’s (’41) scaling predictions and as such provide the first evidence that at suf-
ficiently large Reynolds numbers, Lagrangian acceleration statistics can be described by
Kolmogorov scaling.

Lagrangian Kolmogorov scaling

The Kolmogorov (1941b) hypotheses yield predictions for the scaling of several La-
grangian statistics that have never been tested. Following the notation of Monin & Yaglom
(1975) the second order Lagrangian velocity structure function is defined as

D
L(2)
ij (�) = h(ui(t+ �)� ui(t))(uj(t+ �)� uj(t))i; (A.1)

whereui anduj are components of the velocity vector of a fluid particle and� is a time
difference. If the flow is statistically stationary and� << TL; whereTL is the Lagrangian
velocity correlation time scale, Kolmogorov’s hypotheses predict that at sufficiently high
Reynolds number

D
L(2)
ij (�) = (��)1=2� (�=��) Æij; (A.2)

where� is the mean dissipation per unit mass,� is the kinematic viscosity,�� � (�=�)1=2

is the Kolmogorov timescale, and�(�=��) is a universal function. Furthermore, in the
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inertial time range where� >> ��, this result must be independent of� and one obtains

D
L(2)
ij (�) = C0��Æij; (A.3)

whereC0 is a universal constant. Similarly, for the higher order structure functions in the
inertial time range

DL(p)(�) � (��)p=2: (A.4)

(For odd orders,DL(p) is zero by symmetry unless the absolute value of the velocity
difference is used.)

Predictions for the moments of the fluid particle acceleration probability density func-
tion (PDF) can be obtained by assuming thatui(t) is differentiable and taking the limit
� ! 0 of the Lagrangian velocity structure functions. In particular, the second order
structure function scales as� 2 for small � yielding the prediction for the acceleration
variance

haiaji = a0�
3=2��1=2Æij; (A.5)

wherea0 is another universal constant. The analysis that led to Eq. (A.5) can also be
extended to the higher moments of the acceleration distribution, and it is found that Kol-
mogorov’s 1941 hypotheses predict that the normalized acceleration moments should be
constants

hapi
ha2ip=2 = ap: (A.6)

Note that the acceleration variance is the Lagrangian counterpart to the mean dissipa-
tion in the Eulerian perspective. Equation (A.5) can be viewed as predicting that the
Lagrangian quantity,�1=2haiaii; is similar to the mean dissipation. It is characteristic
of the small scales yet its magnitude is determined by the large scales, and hence it is
independent of viscosity. In some ways, this is a natural quantity to use for Lagrangian
Kolmogorov scaling in place of the dissipation. The measurements presented in this paper
support the idea that the two scales are indeed related as predicted in Eq. (A.5).

Continuing the analogy with Eulerian results, it is expected that intermittency will
cause deviations from the predictions for the higher acceleration moments and the higher
order structure functions. Measurements of these quantities could lead to an important
new perspective from which to study intermittency.

Prior work

Experimental Lagrangian measurements have been of three distinct types. The first mea-
surements used the theory of turbulent dispersion by Taylor (1921) to determine the La-
grangian velocity correlation function from the scalar dispersion. Shlien & Corrsin (1974)
provided a summary of measurements using this technique before themselves offering a
set of measurements.
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The second technique was optically tracking tracer particles that approximated La-
grangian motion. Snyder & Lumley (1971) provided the first systematic set of particle
tracking velocity measurements from wind tunnel grid turbulence. Sato and Yamamoto
Sato & Yamamoto (1987) have reported similar measurements in water tunnel grid turbu-
lence. Virant and DracosVirant & Dracos (1997) have developed a stereoscopic system
for measuring many particle tracks at once in three dimensions and report measurements
in a turbulent boundary layer. Each of these studies has been helpful in illuminating the
large scale Lagrangian properties of turbulence, but resolution limits and low Reynolds
numbers have precluded comparison of small scale statistics with Kolmogorov’s ideas.

The third technique has been to use the relations between the fourth order velocity
structure functions and pressure structure functions Obukhov & Yaglom (1951); Batche-
lor (1951); Hill & Wilczak (1995) to calculate pressure gradient statistics from hot wire
velocity measurements. This allows measurement of particle accelerations since the ac-
celeration of fluid particles is dominated by the pressure gradient contribution for all but
the smallest Reynolds numbers. This was originally suggested by YaglomObukhov & Ya-
glom (1951) and BatchelorBatchelor (1951), and has recently been convincingly demon-
strated in DNS by Yeung.Vedula & Yeung (1999) Hill and Thoroddsen Hill & Thoroddsen
(1997) have used this technique to study spatial acceleration correlations atR� = 208:
Spatial resolution limitations kept them from reporting one point acceleration statistics.

The only available high Reynolds number data came from balloon tracking in the
atmospheric boundary layer.Hanna (1981) This data roughly supports the linear scaling
of the Lagrangian velocity structure function in the inertial range (Eq. A.3) and the value
of C0 is 4:0 � 2:0. Unfortunately, the small sample size and variable flow conditions
limited the conclusions that could be drawn.

In addition to experiments, there have been several direct numerical simulations (DNS)
of Lagrangian statistics of turbulence. Much as in the Eulerian case, DNS has provided
unparalleled accuracy but has been limited toR� < 200. Yeung and Pope Yeung &
Pope (1989) provided a comprehensive study of Lagrangian statistics in artificially forced
isotropic homogeneous turbulence. Squires and EatonSquires & Eaton (1991) calculated
statistics of homogeneous shear flows. More recently Yeung has studied two particle
Lagrangian statistics Yeung (1994, 1997) and has extended the one-particle results to
R� = 200:Vedula & Yeung (1999) A clear conclusion of these studies is that the acceler-
ation variance is not scaling as predicted in Eq. (A.5) forR� < 200:

A.1.3 Experimental Setup and Methods

In this work we are reporting results on particle velocities and accelerations obtained
by optically tracking tracer particles. The method is conceptually straight forward. The
flow is seeded with small neutrally buoyant tracer particles and a portion of the flow is
illumined by a light source. The illumined region is imaged onto a device to record tracer
particle position as a function of time. In this way a two dimensional projection of the
trajectory is obtained. As long as the tracer particles are sufficiently small to approximate
fluid elements, Lagrangian velocities and accelerations can be calculated as derivatives of
the particle positions.
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Figure A.1: Photograph and schematic of the experimental apparatus. In the schematic
the lower part shows a cut through the u-shaped disc and the deflection cylinder. At the
right the vanes can be seen.

The flow between counter-rotating disks

The flow we used was water driven between two counter-rotating disks in a closed cylin-
drical container of moderate volume(110 `): This flow has recently attracted much atten-
tion because it allows very high Reynolds numbers in a confined environment. Douady
et al (1991); Maurer et al (1994); Belin et al (1996); Cadot et al (1995); Fauve et al (1993)
The effects of the recirculating inhomogeneous flow are potentially a concern for large
scale statistics, but for the dissipation scales at the Reynolds numbers attained it seems
reasonable to expect that this will not be a problem.

A picture and schematic of the apparatus are shown in Fig. A.1. It consisted of a
cylindrical container made of plexiglass (PMMA) with hard anodized aluminum top and
bottom plates. The setup could be temperature controlled by water running through chan-
nels in the plates. The transparent cylindrical shell had a diameter of48:3 cm and a height
of 60:5 cm: A large plane window was mounted on the side to allow undistorted visualiza-
tion, and a smaller circular, plane window was mounted at90Æ for illumination. The two
circular disks of20:3 cm diameter had u-shaped cross sections with height of4:3 cm and
were mounted to5 cm diameter shafts that were connected to the external drive. Twelve
equally spaced vanes were mounted in each disk to provide efficient stirring. The disks
were spaced33 cm apart. Both the disks and the shafts were machined from aluminum
and hard anodized for corrosion resistance. The disks were surrounded by a stationary,
cylindrical, plexiglass deflector shield of25:4 cm diameter which extended5 cm beyond
the disks. These deflectors confined the turbulence to the central region of the appara-
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tus. They also had vanes that extended to the edge of the apparatus which damped out
any large scale rotation caused by slight mismatch in the disk speeds. The disks were
driven by two electronically controlled0:9 kW DC motors, which were geared down
by a variable speed reducer. The disk rotation frequency was measured optically by an
LED/photodiode pair and was feedback controlled to 0.1% long term stability with the
fluctuations due to the turbulence being less than 1%. The apparatus was vacuum tight
and allowed a thorough degassing of the fluid to eliminate bubbles. The fluid was filtered
to particle sizes< 0:3 �m; and the relatively small volume made it possible to maintain
excellent chemical purity.

Detection system

For illumination of the detection region, a5W continuous wave Argon ion laser beam was
used which produced a cylindrical illumination volume that passed horizontally (along
thex axis) through the center of the cell. The laser beam had a Gaussian profile with a
width of 1 mm; and was polarized in they direction. A1:5 mm section of the beam was
viewed from90Æ (along thez axis) at a distance of30 cm by a long working distance
microscope. The image was focused onto a position sensitive photodetector. This is
shown schematically in Fig. A.2A.

The detector was essentially a large square photodiode (1:0 cm on a side) which al-
lowed an analog two-dimensional measurement of the position of a single light spot. It
works by measuring the fraction of the photo-current that migrates to the top vs. bottom
of the front plane, and to the right vs. left of the back plane. Each of the four leads was
connected to a charge sensitive amplifier and signals from two opposing sides were added
and subtracted in analog. The resulting signals were digitized and stored by a 4 channel
digital oscilloscope. The waveforms were acquired at a250 MHz digitization rate. Po-
sitions were only needed at typically100 kHz; so 2500 samples were averaged at each
point to reduce the noise. The resulting waveforms were transferred via the GPIB bus to
a Pentium computer where they were stored. Positions were calculated later by a division
of the corresponding difference and sum waveforms. The time interval between recorded
tracks was limited to0:5 s by the data transfer rate through the GPIB bus. The detector
was carefully checked for linearity of its position output by scanning a fiber optic over
its surface. It was linear to better than 1% over the central 70% of its length in both the
horizontal (x) and vertical (y) directions. To minimize position measurement error, only
positions which were within this central region were used in the data analysis.

After an experiment, the position scale of the detection system was calibrated by mov-
ing the unchanged system (microscope and detector) from the turbulence chamber to an
aquarium of the same optical geometry. The end of a multimode optical fiber attached to
a micrometer and was positioned within the water in the focus of the microscope. The
positions of the light spot were recorded as the fiber optic was moved. With this technique
we obtained a calibration of the position scale within�2%.
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Figure A.2: (A) Schematic of the optical setup and (B) of the primary (1) and secondary
(2) reflections from the transparent spheres.

Particles

For tracer particles, we used transparent polystyrene spheres with density1:06 g=cm3:
The concentration of particles was kept low and was chosen to give one particle track
every1 to 2 sec. For the particles to follow the flow passively one would like to min-
imize their size. In our experiment the minimal size was dictated by the need to gather
enough light for the detector to give sufficiently accurate position measurements. We used
two different diameter particles. One batch had mean diameter of250 �m taken from a
150 �m to 350 �m sieve cut. The other had a mean diameter460 �m with standard
deviation of8 �m.

We also tried to use higher reflectivity, silver coated, hollow glass spheres. These
spheres would have had the advantage that smaller particles could have been used. How-
ever, experiments showed that the reflective surface of the particles was very inhomoge-
neous. As the particles rotated, the inhomogeneous reflectivity of the particles’ surface
led to rapid fluctuation in the reflected light intensity. Due to the relatively slow response
time of the position sensitive photodiode (2 �s), these rapid fluctuations could not be re-
solved and resulted in inaccurate position measurements. In an attempt to overcome this
problem we also used a position sensitive photomultiplier tube. Although this sensor had
high light sensitivity and an ultrafast response time of1 ns, its spatial resolution was not
sufficient.

Particle tracks

Figure A.3 contains two example particle tracks. The majority of the tracks recorded were
almost straight like the one shown in Figs. A.3A and A.3B, but a few displayed large
curvature such as the one shown in Figs. A.3C and A.3D. These sharply curved tracks
suggest the expected intermittency of Lagrangian accelerations, and may be connected to
the coherent structures which have recently attracted much interest. Belin et al (1996);
Cadot et al (1995); Jimenez et al (1993)

In the data analysis, random and systematic errors of the measured particle position
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Figure A.3: Two examples particle tracks for run 9 with�� = 0:59 ms and� = 23 �m.
The upper trajectory represents a typical acceleration (at the center,ay = 90 m=s2, half
the rms acceleration) while the lower track represents a rare event (at the center,ay =
1490 m=s2, 8 times the rms). Both the particle trajectories (A & C) and the positions
versus time (B & D) are shown.
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data had to be considered. The accuracy of the position measurements was sensitively
dependent on the intensity of the light gathered onto the detector. Due to the Gaussian
intensity profile of the laser beam, a trajectory typically spanned a range of intensities
and correspondingly a range of measurement uncertainties. To obtain an estimate of the
magnitude of the random measurement error as a function of intensity, we fitted a poly-
nomial to each trajectory assuming constant error. For each data point, the residual was
calculated and registered with the point’s light intensity. Repeating the same procedure
for all trajectories, we obtained the rms residual as a function of intensity; and this was
used as the position measurement error. The order of the fit polynomial was chosen to
be1 + t`=��; truncated to an integer, wheret` it the total time the particle was tracked,
and�� is determined in SectionA.1.6. This form was determined by studying the mean
square deviation of fits as a function of track length for tracks generated by the Lagrangian
stochastic model described in SectionA.1.6.

In addition to random position errors, we identified at least two types of systematic
errors in the data. One occurred when multiple particles came into view at the same time.
This resulted in sudden variations in the particle position, as the detector provided only
the “center of mass” position of the light hitting it. We observed these tracks only rarely,
since the time between detections was a factor of 500 longer than the time it took a parti-
cle to pass through the observation volume. Most of these tracks could be rejected on the
basis of the nearly discontinuous position and velocity. Along the laser beam direction
(thex axis), the transparent particles led to two reflections. This is shown schematically
in Fig. A.2B. The larger horizontal size of the light spot increased the random uncertainty
in the measuredx position. It also had a systematic effect when one of the reflections
was shadowed by another particle that passed through the laser beam outside of the ob-
servation volume. This shadowing effect led to trajectories where the particle suddenly
appeared to have moved. Fortunately, this did not appear in they data and it was simple
to estimate its effect.

Another possible source of error was the nonuniformity of the polystyrene particles.
Scratches and dents in the surface, deviations from a spherical shape, and index of refrac-
tion variations within the sphere would lead to changes in the position of the light spot
produced by rotating particles, and thus to an error in the particle position measurements.
While viewing the particles under a microscope, it did not appear that these effect should
be large. However, this might contribute to the correlated errors discussed in Section
A.1.6.

A.1.4 Data

The data sets presented in this paper were all recorded with the detection region at the
zero mean velocity point at the center of the flow. We adjusted the detection system to
the point that gave zero mean velocity, since we were able to measure the mean velocities
with better spatial resolution than we could determine the geometric center of the flow.
Position in the unmeasuredzdirection was set to our best determination of the geometric
center of the flow—which should be the zero mean velocity location to within about 5
mm.
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Table A.1: Parameters for all data runs taken with the position sensitive photodiode.
f ~u R� � � �� � tm=�� Ntr

(Hz) (m/s) 10�6 m2=s m2=sec3 ms �m
250 �m Particles
1.50 0.168 723 1:01� 0:02 0.023 6.69 82 1.5 4148
2.50 0.281 985 0:91� 0:01 0.106 2.93 52 1.7 15211
2.50 0.281 921 1:04� 0:02 0.106 3.14 57 1.6 11910
3.75 0.419 1180 0:95� 0:05 0.351 1.64 39 3.0 22000
3.75 0.419 1147 1:00� 0:02 0.351 1.69 41 3.0 26870
5.00 0.546 1338 0:96� 0:03 0.777 1.11 33 4.5 8499
5.00 0.571 1340 1:00� 0:02 0.887 1.06 33 1.9 8318
6.25 0.689 1499 0:97� 0:02 1.586 0.78 27 2.6 18764
6.25 0.693 1503 0:97� 0:02 1.559 0.79 28 6.3 15077
7.50 0.834 1668 0:94� 0:02 2.762 0.59 23 3.4 28790
9.50 1.063 1981 0:85� 0:02 5.720 0.39 18 5.3 8132
9.50 1.060 2004 0:83� 0:02 5.671 0.38 18 5.3 12579
460 �m Particles
2.50 0.280 1011 0:86� 0:01 0.104 2.88 50 1.7 3962
3.75 0.419 1236 0:86� 0:01 0.351 1.57 37 3.18 6134
5.00 0.559 1410 0:88� 0:01 0.832 1.03 30 4.9 7995
5.00 0.559 1410 0:88� 0:01 0.832 1.03 30 9.7 13056
6.25 0.693 1595 0:86� 0:02 1.571 0.74 25 2.7 13994
7.50 0.834 1777 0:84� 0:01 2.802 0.55 21 3.7 13965
9.50 1.060 2021 0:82� 0:01 5.688 0.38 18 5.3 13156

Each data set consists of a large number of tracks with 500 position measurements
per track. Because particles remained in the detection region for varying time periods, the
valid part of each track was some fraction of the total 500 points. Data was acquired at
about 5000 tracks per hour.

The maximum Reynolds number studied was limited by the power available from the
motors. The minimum Reynolds number was limited by the necessity of keeping enough
particles suspended in the flow. For small fluctuating velocities, the particles settled out
of the inactive regions in the flow; and thus sufficient statistics could not be collected at
lower Reynolds numbers.

Parameters for all data sets are given in Table A.1. Each run is identified by a number.
The rotation frequency of the disks isf: The typical velocity used for scaling is~u =
(huiuii=3)1=2 where the unmeasured velocity component (uz) is assumed to have the same
statistics as the measured horizontal component (ux) due to the cylindrical symmetry. For
the460 �m particles, the error in thex position measurements were too large to determine
accuratex velocities. They velocities were very similar to the values for the smaller
particles, so we set~u for the larger particles equal to the average of the velocities of the
smaller particles at the same frequency.
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We determined the dissipation by

� =
~u3

L
: (A.7)

whereL = 0:21 m includes the normal constant coefficient in this equation and is deter-
mined from the form of the acceleration autocorrelation function in sectionA.1.6. For the
Taylor microscale Reynolds number, we used the usual isotropic definitions

R� =
~u�

�
=

�
15~uL

�

�1=2

; (A.8)

since

� =

�
15�~u2

�

�1=2

: (A.9)

The kinematic viscosities given are for the mean temperature of each run, with the uncer-
tainty reflecting temperature drift. Values were obtained from Ref. 31. The Kolmogorov
scales of time and length are�� = (�=�)1=2 and� = (�3=�)1=4 respectively;tm is the max-
imum tracking time, which is determined by the time base setting on the oscilloscope;
Ntr is the number of tracks with more than 25 positions recorded.

A.1.5 Measuring Velocity Statistics

Measurements of the mean velocity and rms velocity fluctuations are essential in describ-
ing the turbulent flow. As with almost all known fluid measurement techniques, it is
non-trivial to extract these statistical quantities from the raw data. Just as in burst Laser
Doppler Anemometry (LDA), the probability of a particle being observed depends on its
velocity; thus the naive velocity moments calculated by sums over observed particle ve-
locities are incorrect. Buchave, George, and Lumley Buchave et al (1979) provided an
analysis of the basic issues and a method of calculating the corrected velocity moments
using particle transit (residence) times.

We have developed a different but equivalent method based on the form of the velocity
probability density function (PDF). The motivation for this was twofold:

(i) The data acquisition procedure applied here and described above did not al-
low the measurement of residence times for all tracks,i.e., some slow par-
ticles stayed in the detection region longer than the digitization time. This
made it impossible to use the method discussed by Buchave et al. Buchave
et al (1979)

(ii) The PDF method opens the door to Monte Carlo modeling of the detection
process. By using Lagrangian stochastic models one can simulate tracks from
which one can calculate the PDF for detecting a particle conditional on its ve-
locity vector. As shown below this conditional PDF can be used to calculate
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the true PDF of the velocity. It should be possible to apply this method to
other situations where the residence time method is not easily applicable.
Examples would be where the detection region is large or oddly shaped, or
multiple particles are tracked at once. For the purposes of this paper the use
of Monte Carlo modeling was not necessary.

Correction of measurement biases in the velocity PDF

Let us define the correct 3-dimensional joint velocity PDF to beFu(~u): The measured
PDF is given by the correct distribution conditional on a valid particle track being de-
tected:FujD(~ujD), whereD can be thought of as a binomial random variable representing
whether a particle is detected or not. The problem is to model the detection process so
that a relationship betweenFu andFujD can be found. Our solution is to develop a model
for FDju(Dj~u) and then use Bayes’ theorem to invert this to the desired form.

FujD(~ujD) =
FDju(Dj~u)Fu(~u)R

FDju(Dj~u0)Fu(~u0)d3~u0 : (A.10)

There is a rich history of philosophical debate surrounding the application of this theorem
to decision theory, but its use here as a means of inverting conditional probabilities is well
accepted. Lindsey (1996)

In order to develop a model forFDju(Dj~u); we assume:

(i) The detection region is small enough that velocity PDFs do not vary across
it.

(ii) The velocity of a particle does not change significantly between entering the
detection volume and the point where the velocity is measured.

(iii) The detection region is isotropic, so that its cross sectional area does not
depend on the velocity direction.

(iv) Particles are uniformly distributed in space with low enough density that the
probability of multiple particles being detected is negligible.

(v) All particles that enter the detection region produce valid tracks.

This model corresponds well to the situation in our flow. Assumption (i) was clearly valid
across the1 mm3 detection region. Assumption (ii) was fairly good since measurements
given later showed that changes in velocity were typically less than15%, and they were
this large only for the largest Reynolds numbers. By changing the point along the track
at which the velocity was sampled, we determined that this effect was not significant.
Assumption (iii) was probably the weakest since the detection region was a cylinder.
However, the geometry used in the experiment was still reasonably approximated by a
sphere. With our enclosed turbulent flow and maximum data rates of two measurements
per second (iv) was satisfied. Assumption (v) is difficult to quantify. Some particles will
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pass through the corners of the region and their tracks will not have enough points to fit a
velocity. This could lead to a bias against large velocities, but should not be a large effect.

With these assumptions, the rate of particles passing through a spherical detection
region of cross sectional area�S is

R = j~ujn�S; (A.11)

wheren is the number of particles per unit volume. In this situation, the PDF of the
number of particles detected in a time interval�t; conditional on the velocity, is a Pois-
son distribution. With small particle densities and short particle transit times, only the
probability of one particle is significant, and it simplifies to

FDju(Dj~u) = R�t = j~ujn�S�t: (A.12)

Inserting this into Bayes’ theorem gives

FujD(~ujD) =
j~ujn�S�tFu(~u)R j~u0jn�S�tFu(~u0)d3~u0 ; (A.13)

and thus the measured distribution is related to the correct one by

FujD(~ujD) = Kj~ujFu(~u): (A.14)

whereK is a normalization constant. With Eq. (A.14) the correct PDF can be calculated
from the full 3-dimensional measured distribution.

The method described above is equivalent to the method of residence time weighting
described by Buchave et al. Buchave et al (1979) We show this for the mean velocity,
since the higher moments of the velocity distribution can be shown to agree in the same
way. They obtain the mean velocity by a residence time weighted average of the sampled
velocities

ui =

P
k u

(k)
i �t(k)P
k�t

(k)
; (A.15)

whereu(k)
i is thekth measurement of the velocity componenti, and�t(k) is the time over

which thekth particle traverses the observation volume. In PDF notation, the equivalent
quantity is

ui =

R
ui�t FujD(~ujD)d3~uR
�t FujD(~ujD)d3~u

: (A.16)

Now substituteFujD(~ujD) from Eq. (A.14) and recognize that�t is just`=j~uj where` is
the distance the track travels. Since` is independent of the velocity, we find

ui =

Z
uiFu(~u)d

3~u: (A.17)

Thus we see that residence time weighting of samples from the PDF in Eq. (A.14) pro-
duces the correct velocity moments.
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Figure A.4: PDF of thex andy component of the measured velocities, computed from
linear fits to particle tracks for run 9. Also shown is the fit using Eq. (A.18) (solid) and
the true velocity PDF after bias correction (dashed).

Velocity data analysis and results

Our primary measurements are made in the zero mean velocity region at the center of
the cylindrically symmetric flow. The statistics of the unmeasuredz velocity component
should be the same as for the measuredx component because of the cylindrical symmetry.
In addition, the Reynolds stresses should be zero at this location due to symmetry.

We measured the statistics of thex andy components of the particle velocities from
linear fits to the center 25 points of each recorded track. Thex andy projections of the
measured joint velocity PDF for run 9 is shown in Fig. A.4. The Reynolds stress between
thex andy velocity components was zero to within the measurement resolution.

To correct for the biases discussed above, we were not able to apply Eq. (A.14)
directly because we did not have measurements of thezvelocity component. We circum-
vented this problem by assuming that the correct velocity PDF was a joint Gaussian. Far
from the walls of high Reynolds number flows, velocity PDFs are know to be very nearly



86

Gaussian with deviations which should not be perceptible in the second order moments
which we need to determine.Noullez et al (1997) With this information, Eq. (A.14) can
be integrated over the unmeasuredz direction to obtain the form of the joint PDF of the
measuredx andy velocities,

F �
ujD(ux; uyjD) = K

Z 1

�1

j~uj exp(� u2
x

2�2
x

� u2
y

2�2
y

� u2
z

2�2
x

)duz; (A.18)

where only�x and�y are fit parameters.
To determine these two unknown velocity standard deviations, we integrated Eq. (A.18)

numerically and used a nonlinear least squares fitting routine to fit the model to the mea-
sured 2-dimensional joint PDF.

Projections of the model fit to the measured PDF are shown in Fig. A.4. The fitted
values are�x = 0:921 m=s and�y = 0:622 m=s: The ratio of the rms velocity compo-
nents is 1.48 which is typical of the values observed in homogeneous shear flows. Garg
& Warhaft (1998) The model captured the measurement bias quite well, except that the
fit slightly overestimated the probability forx velocities near zero. As a result, it appears
that the model slightly underestimated the rmsx velocity. With the ad hoc assumption
that thex andz velocity variances are different in Eq. (A.18), the model produces a con-
siderably better fit to the central region of thex velocity PDF. Although this allowed a
better fit, it only led to a 3% change in the fitted rmsx velocity. Since it is likely that other
approximations in the model and not lack of symmetry is causing the deviation, we fitted
only for �x and�y and recognize a 3% uncertainty in the bias corrections.

The issue of measurement uncertainty in the measured velocity PDF should be ad-
dressed. The error contribution can be determined from plots of the standard deviation
of the measured PDF versus the number of points used in the fit to estimate the velocity.
These show that for the linear fits over 25 points, there was a 1% standard deviation con-
tribution due to velocity measurement error, and a 1% bias due to the faster tracks being
less likely to stay in the detection region long enough to be included in the sample. These
effects are individually small, and together they tend to cancel.

The typical velocity used for scaling of the results presented in this paper is~u =
(huiuii=3)1=2: Figure A.5 shows that~u, �x; and�y all scale linearly with the disk fre-
quency. For each disk frequency, other thanf = 7:5, two independent measurements
are plotted. The data points with the largest deviation from the linear scaling atf = 5
have lower statistics than most of the runs (see Table A.1), and appear again as the largest
deviations from Kolmogorov scaling in Fig. A.12. The linear scaling is important in es-
tablishing that there were no changes in the large scale structure of the flow over the
Reynolds numbers studied.

A.1.6 Particle Acceleration Measurements

The most challenging part of measuring particle accelerations in high Reynolds number
turbulence is to obtain high enough spatial and temporal resolution on particle position
measurements. With the analog positioning system described above, we obtained posi-
tion resolution of typically 5�m and temporal resolution up to 4�s. In our flow, this was
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Figure A.5: Fluctuating velocities for runs 1 to 11.
, ~u; +, �x; �; �y: Solid lines are
linear fits. The linear scaling demonstrates that there were no significant changes in the
large scale structure of the flow.

sufficient to allow accurate determination of the acceleration variance and the extraction
of the general form of the acceleration autocorrelation function. To distinguish between
the true accelerations and the measurement errors, a rather involved data analysis was
required which can be subdivided into three parts. In SectionA.1.6we describe the tech-
nique used to extrapolate the measured acceleration variance to eliminate the contribution
from measurement errors. SectionA.1.6describes a method for correcting the systematic
error introduced by fitting a second order polynomial to the trajectory. In SectionA.1.6
we present a method for determining the dissipation� from the acceleration correlation
function. At several points, the data analysis required knowledge of a quantity that was
determined in a later section. It was found that iterating the entire analysis twice was
sufficient to provide self-consistency.

Extracting accelerations from particle tracks

The first step in extracting accelerations from particle trajectories was to eliminate the
tracks that had large position measurement errors. This was done by fitting a polynomial
to the entire track and eliminating tracks with large reduced�2 for the fit,Taylor (1997)
i.e. tracks with large rms deviation from the fit. Figure A.6 shows the distribution of
measured reduced�2 values. Particle tracks with a reduced�2 > 6 were not considered
for the data analysis. This cutoff resulted in about4% of they tracks and7% of thex tracks
being eliminated. Adjusting the cutoff down to3 and up to12 made only a 2% change
in acceleration variance measurements, even though the measurement error contribution
discussed later changed significantly. The order of the fit polynomial was chosen to be
1 + t`=��; just as in SectionA.1.3. This procedure eliminates almost all the multiple
particle and most of the shadowing effects discussed in SectionA.1.3.

After elimination of the spurious trajectories, a polynomial was fitted to a certain
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Figure A.6: Probability distributions of reduced�2 values of fits to position data from run
9. The slightly poorer fits of thex data may be attributed to the increased error due to
double reflections as described in SectionA.1.3.

length of the track with the second time derivative giving the acceleration. As polynomial
fitting is a linear operation, the acceleration obtained from the fit can be thought of as
the acceleration of a fit to the true trajectory added to the acceleration of a fit to the
measurement errors. The ideal situation would be to fit over a section of each track that
was long enough that the acceleration due to the measurement errors would be negligible
while still short enough that the polynomial was able to reproduce the trajectory. For our
data the measurement errors were too large for this direct approach.

The technique we used to measure the acceleration was to fit second order polynomi-
als to trajectory segments of size�t centered around the midpoint of the trajectory—with
�t ranging from just a few points up to the entire tracking time. We repeated this pro-
cedure for all tracks in a run and thus obtained the acceleration variance as a function of
trajectory time segment used in the fit. For very short trajectory segments the measured
acceleration variance was dominated by noise; while for increased segment length the
noise contribution decreased. Very few particles were tracked for the longest segments,
and consequently measurement uncertainty increased and eventually no variance could
be measured. An example of this is shown in Fig. A.7 for they trajectories from run
9. Thex trajectories were very similar except for a slightly larger noise contribution as
described earlier in SectionA.1.3. The error bars were calculated by dividing the sample
into 8 sets, processing each set, and taking the standard deviation of the results from each
set divided by the square root of the number of sets.

If the measurement errors were Gaussian and uncorrelated, the contribution to the
acceleration variance from position measurement errors would be proportional to�t�5;
where�t is the time interval spanned by the evenly spaced points used in the fit.Wand &
Jones (1995) In our case the errors were correlated and�t�5 was not the correct form.
However, the data for the square root of the measured acceleration variance was very
nearly a constant added to a power law. This is equivalent to the variance having two
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Figure A.9: Model calculation of the error in the acceleration variance due to under-
resolved trajectories. The dashed line is from direct application of Sawford’s model. The
solid line is from a modified model with differentiable particle accelerations.

error correlation lengths balanced such that

ha2i = A2 + 2AB�t�c=2 +B2�t�c: (A.19)

We used this power law to extrapolate to the true acceleration varianceA2.
It is very hard to determine the exact correlations in the measurement errors, so we

can not justify this form rigorously; but Eq. (A.19) provided excellent fits to the decay
of the measured acceleration variances with increased length of fitted trajectories. Fitted
values of the exponentc were usually between 3 and 3.4. The log-log plot of the square
root of the data in Fig. A.8 with the fitted constant ofA = 165 m=s2 subtracted, clearly
shows that the noise contribution had power law behavior.

Acceleration measurement bias

A concern with the technique described above was that fitting a second order polynomial
over several Kolmogorov timescales (see Table A.1) may not have captured the true ac-
celerations,i.e. the quadratic polynomials might not have fully resolved the true trajectory
structure and thus might have underestimated the acceleration variance. To quantify this
effect, we developed a model to produce simulated stochastic particle tracks, and ana-
lyzed these tracks using the same code as in the data analysis of the experimental runs.
Then we used the acceleration variances obtained from the model tracks to calculate the
magnitude of the errors introduced by not fully resolving the experimental trajectories.
These errors were later used in SectionA.1.7to correct for this effect.

The best model previously available for this is a second order Lagrangian stochastic
model developed by Sawford. Sawford (1991); Pope (1994) This model uses a continuous
but nondifferentiable process to model the Lagrangian acceleration, and calculates veloc-
ities and positions from integrals of the accelerations. The dashed line in Fig. A.9 shows
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the measured acceleration variance as a function of trajectory segment length when tracks
from Sawford’s model were analyzed. The extrapolationt! 0 gives the true acceleration
variance, which was an input parameter to the model. Figure A.9 shows that our fitting
procedure underestimated the acceleration variance, and that the error increased rapidly
with increasing trajectory time segment. Yet from the fact that the error due to under-
resolved trajectories goes linearly and not asymptotically to0 for t ! 0, we concluded
that the model was insufficient.

To improve on this, we modified Sawford’s model. We applied it to the third time
derivative of the position rather than to the acceleration. This new model produced trajec-
tories with continuous, differentiable accelerations, and thus better captured the known
form of the acceleration autocorrelation function. The new form of the model is

d _ai(t) = �
�
1 +

�

T1

�
_ai(t)

dt

�
� ai(t)

T1

dt

�

+

�
2h _a2i i

�
1 +

�

T1

��1=2 dW

� 1=2
: (A.20)

where _ai(t) is the first time derivative of an acceleration component at timet: The rest of
the notation is from the review by Pope. Pope (1994) The model constants,� = 0:5��
andT1 = 0:7��; were determined by fitting the acceleration autocorrelation function
produced by the model to the Lagrangian DNS acceleration autocorrelation function from
Yeung and Pope. Yeung & Pope (1989) As explained in the next section, it is expected
that the DNS results remain unchanged at higher Reynolds numbers. The input parameter,
h _a2i i; is determined by the curvature of the acceleration autocorrelation function at the
origin to be

h _a2i i =
ha2i i
T1�

; (A.21)

where no summation is implied. Forha2i i we use the Kolmogorov prediction, Eq. (A.5),
with a0 = 7 as determined in SectionA.1.7.

This model produced better acceleration time series than Sawford’s original model,
but has non-stationary velocity statistics. For large scale properties this model is of little
use, but it is a good approximation to the very short time behavior of a turbulent flow.
Processing tracks from this model yielded the solid curve shown in Fig. A.9.

The deviation between the solid line in Fig. A.9 and the value fort! 0 represents the
bias introduced by fitting a second order polynomial over that trajectory time segment. In
the final data analysis of the measured trajectories, we corrected for this bias by adding
the modeled deviation onto the measured acceleration for that length of trajectory segment
(Fig. A.7). Results both with and without this correction are given in SectionA.1.7.

Determining the dissipation from the acceleration autocorrelation function.

The prevalence of turbulence research on flows with large mean velocities where Taylor’s
hypothesis may be applied can lead to the misconception that� is always fairly simple to
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Figure A.10: Acceleration autocorrelation function for250 �m particles (circles);460 �m
particles (triangles); DNS data Yeung & Pope (1989) (solid line); and estimated errors
(dashed lines).

determine. In flows with zero mean velocity, which makes them attractive for Lagrangian
studies, this is not the case.

We determine the mean dissipation from� = ~u3=L; where ~u is measured, andL
is assumed to be determined by the geometry of the flow and independent of Reynolds
number. To determine the value ofL; we used a method Pope (1997) that relies on the
autocorrelation function of an acceleration component, defined for they compontent as

�a(t) =
hay(t0)ay(t0 + t)i

ha2yi
: (A.22)

Yeung and Pope Yeung & Pope (1989) found from direct numerical simulations that,
up toR� = 93, �a(t) passed through zero att = 2:2��: For times smaller than this, the
curves were essentially independent of Reynolds number when scaled by the Kolmogorov
timescale. Yeung has recently found agreement with this atR� = 140: Yeung (1997)
By measuring�a(t) for our data and scaling time so that it fell onto the known curve
from Yeung and Pope, Yeung & Pope (1989) we were able to determine the Kolmogorov
timescale,��, and from this,� andL:

Figure A.10 shows the acceleration autocorrelation function measured for they com-
pontent of all data sets with more than 10,000 tracks. The solid line is from Yeung and
Pope Yeung & Pope (1989) atR� = 93: For each experimental run,�a(t) was determined
by fitting second order polynomials to sections of each track separated by timet, multi-
plying the fitted accelerations and averaging over all tracks. Each autocorrelation function
was normalized by the corrected acceleration variances given in SectionA.1.7. The time
span used for the quadratic fits was chosen to be the time when the measured acceleration
variance reached twice the extrapolated value for the sets with460 �m particles and three
times the extrapolated value for the sets with250 �m particles (see Fig. A.7). The results
were surprisingly insensitive to the exact choice of time span, suggesting that the acceler-
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ation measurement errors were sufficiently uncorrelated. The error bars were determined
as before by dividing each data set into segments and calculating the standard deviation
between the segments divided by the square root of the number of segments. This made
the incorrect assumption of Gaussian errors, so the errors were somewhat underestimated.

The observed collapse of the experimental data was obtained with the assumption that
there was one constant length scaleL in the flow. By using an arbitrary value forL, the
dissipation can be determined from� = ~u3=L and thus��. The ratios between the�� ’s for
various data sets obtained in this manner were correct even though the overall magnitude
of �� was arbitrary. Scaling the time axis for each data set by�� collapsed the data of all
runs including both particle sizes, as shown in Fig. A.10.

To determine the actual value ofL; the time axis for all data sets together was scaled
again to provide the best fit to the DNS results. This was done by a least squares fit
to the data for�� < 2: The value ofL obtained from this least squares fit was (0:21 �
0:06) m: This value is very reasonable, as it is close to the diameter of the disks (0:203 m).
We estimated the error inL by choosing limits that seemed visually reasonable. The
dashed lines in Fig. A.10 reflect the error estimates inL. They were found by scaling the
simulation results by the amount corresponding to the error inL. The deviation between
our data and the simulations for�� > 2 is expected. As the Reynolds numbers of the
simulations increased, the negative excursion above2:2�� was continuously decreasing.
Yeung & Pope (1989) For the high Reynolds numbers in this experiment, the negative
excursion should be very small and should extend to much longer times.

A.1.7 Results

Figure A.11(A) shows�1=2ha2i i;whereha2i i is the variance of a single acceleration compo-
nent, as a function of velocity scale for all of the data sets without applying the correction
for under-resolved trajectories (SectionA.1.6). The data clearly shows a power law. The
prediction for the variance of fluid particle acceleration components from Kolmogorov’s
hypothesis is

ha2i i = a0�
3=2��1=2: (A.23)

Using� = ~u3=L; this can be rewritten

�1=2ha2i i = a0L
�3=2~u9=2: (A.24)

The scaling exponent of the data shown in Fig. A.11(A) is in good agreement with the
Kolmogorov prediction of~u9=2 shown by the solid line.

Figure A.11(B) shows the same data with the under-resolved trajectory correction
applied. The correction raised the measured acceleration variance by amounts ranging
from 3% up to 22%, depending on the typical number of Kolmogorov timescales over
which the particles were tracked. The agreement with Kolmogorov scaling is signifi-
cantly improved. Over three orders of magnitude the scaling of the data with the smallest
errors (they data) is nearly indistinguishable from the predicted scaling. We emphasize
that the agreement with Kolmogorov scaling requires only the assumption of a constant



94

0.2 0.3 0.5 0.7 1.0
10-1

100

101

102

0.2 0.3 0.5 0.7 1.0
10-1

100

101

102

B

A

~u   (m/s)

ν1/
2

<
a i

 2
(m

>
3 /

s9
/2

)
ν1/

2
<

a i
 2

(m
>

3 /
s9

/2
)
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Figure A.12: Compensated acceleration scaling.y trajectories (250 �m (
) and450 �m
(�)) and x trajectories (250 �m (+)). DNS data from Yeung and PopeYeung & Pope
(1989) (�).

length scale,L, and is not affected by the large uncertainty in the value ofL determined
in SectionA.1.6. It is interesting to note that at the highest Reynolds number the rms
acceleration is about300 m=s2, or more than 30 times the acceleration of gravity.

Figure A.12 showsa0 calculated from Eq. (A.24) for the data in Fig. A.11B. Also
shown is the direct numerical simulation data from Yeung and PopeYeung & Pope (1989)
and the extrapolation of theR1=2

� scaling they observed. Yeung’s recent simulations con-
tinue to follow theR1=2

� trend up toR� = 200 wherea0 = 3:Vedula & Yeung (1999)
Particle settling problems prevented us from studying lower Reynolds numbers and di-
rectly comparing with the simulation results.

The central feature of Fig. A.12 is that the measured value ofa0 is approximately
independent of Reynolds number, particularly for the lower noisey data for both particle
sizes. From this we conclude that forR� & 1000; a0 has turned over from theR1=2

� scaling
previously observed in DNS to showing relatively good agreement with the Kolmogorov
(’41) prediction thata0 is constant. Modest deviations from the Kolmogorov (’41) scaling
could lie within the scatter of the data. Further measurements, particularly of the higher
moments of the acceleration distribution will be necessary to gain insight into what effects
intermittency may have on Lagrangian acceleration statistics.

When interpreting Fig. A.12, it is important to recognize that there is a significant
uncertainty in the overall scaling of the vertical axis for the measured data which results
from the uncertainty in the mean dissipation, or equivalently from the uncertainty inL.
This does not affect the conclusion thata0 is independent of Reynolds number, but it does
affect attempts to interpolate between our data and the DNS data. No clear anisotropy
between thex andy measurements can be identified, although the larger measurement
errors in thex data make this difficult to determine.

The value of the Kolmogorov constant,a0; is read from Fig. A.12 to be7:0 � 1:0;
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Figure A.13: Probability density function for they acceleration normalized by the rms
acceleration (from Fig. A.11B).

where this uncertainty reflects fluctuations between data sets. In addition there is the
larger uncertainty in the valueL = 0:21 � 0:06 m which entered into the calculation of
eacha0: When added in quadrature these together produce an uncertainty of�45%: Thus
the final value ofa0 was found to be7� 3:

Surprisingly, we observed very little difference between the data for the250 �m parti-
cles and the460 �m particles. This observation supports the hypothesis that the particles,
with diameters ranging from 5 up to 25 times the Kolmogorov microscale, were acting
like fluid particles to within the accuracy of the measurements. The slight decrease of the
data at the highest Reynolds number might be a particle size effect, but this is unclear.
The insensitivity to particle size may be related to the fact that the pressure term in the
Navier-Stokes equation is dominant in determining the fluid particle acceleration at large
Reynolds numbers.

Figure A.13 shows the PDF of the measuredy acceleration normalized by the rms
acceleration from Fig. A.11B for runs 4, 9, and 11. Tracks are included in the PDF if
their tracking time is more than 60% of the maximum tracking time. The logarithmic plot
shows exponential tails, suggesting intermittency. No clear deviation between the differ-
ent Reynolds numbers is observed, particularly when one recognizes the uncertainties in
the rms values used for normalization. Although values of the flatness and higher order
moments are not reported due to limited statistics and sensitivity to the identification of
spurious tracks, the flatness is clearly larger than the Gaussian value of 3. The rare events,
with accelerations up to 8 times the rms were not spurious. For example, the track shown
in Fig. A.3 is atR� = 1668 and hasay=ha2yi1=2 = 8:2 which is far in the tail of the plotted
PDF.
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A.1.8 Conclusions

In this paper we presented experimental particle tracking measurements in a flow between
counter-rotating disks for Taylor Reynolds numbers900 < R� < 2000; an order of
magnitude higher than previously possible. We recorded particle tracks by imaging tracer
particles onto a position sensitive photodiode, and obtained data with sufficient spatial and
temporal resolution to measure accelerations. A primary conclusion is that experimental
measurements of Lagrangian quantities at these Reynolds numbers are possible. We have
developed a model for correcting particle tracking velocity measurements when residence
times are unavailable. We reported results for the acceleration variance which are in good
agreement with Kolmogorov’s (’41) scaling predictions. This data represents the first
validation of the expectation that at large Reynolds numbers Lagrangian accelerations
can be described by Kolmogorov (’41) scaling. The scatter in the data does not allow
conclusions about possible intermittency corrections to the Kolmogorov (’41) scaling.
The value of the Kolmogorov constant for the acceleration variance was found to be7�3:

A.2 New interpretations

The measurements presented in this paper represent a new measurement technique. As
a result, the interpretation of the data had several steps which were justified primarily by
plausibility and internal consistency rather than having the external justification that usu-
ally develops as a technique matures. Our recent measurements with silicon strip detectors
have yielded significantly higher resolution data that has led us to a new interpretation of
some of these results.

There are two primary sources of the problems in the interpretation that was made of
this data. The first lies in the justification of the extrapolation procedure using a stochas-
tic model in section A.1.6. Larger data sets of more precise data demonstrate that the
non-gaussian acceleration distribution that is already visible in Fig. A.13 is dramatically
different from the gaussian acceleration distribution assumed by the stochastic model. In
an intermittent cascade, the rare events in the tails of the acceleration distribution have
short time scales, and as a result the stochastic model significantly underestimates the
magnitude of the correction. The issues are made clear in Fig. A.14 which contains four
plots of the measured acceleration variance as a function of fit length. The top two are
from the position sensitive photodiode data, and the other two are from the silicon strip
detector data with two different tracer particle sizes. As shown in section 4.8, the46 �m
particle data is not significantly different from true Lagrangian trajectories, so for times
greater than0:5�� this can be considered the “true” curve. With this information we can
determine that the correction due to averaging over particle trajectories is much larger
than is shown in Fig. A.9.

The second source of problems that compounds the issues above is that the method
used to estimate the energy dissipation in section A.1.6 has a larger error than originally
estimated. The reason for this will be discussed below, but the effect is that the Kol-
mogorov time scale used in Fig. A.9 was too large and this compounds the stochastic
model underestimate of the error due to fits averaging over the trajectory. The normaliza-
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Figure A.14: Comparison of the acceleration variance as a function of fit length for the
position sensitive photodiode and silicon strip detector data. The top two data sets are
from the position sensitive photodiode data for 250�m particles: all the data (triangles),
and with a cut of reduced�2 < 10 (circles). The other two are from the silicon strip
detector data. The upper one is for46 �m particles, and the lower one (squares) is for
467 �m particles. The Kolmogorov time used in this plot is the one determined with the
position sensitive photodiode data. The position sensitive photodiode data is at 7.5 Hz
disk frequency and the silicon strip detector data is at 7.0 Hz, but it is found that the shape
of these curves changes very little with disk frequency in this range of Reynolds number.
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tions used in Fig. A.14 use the energy dissipation from this appendix which are known
not to be correct, but this allows direct comparison with the plots in this appendix.

The result of these two problems is that the extrapolations to determine the value of
the acceleration variance described in section A.1.6 do not provide an adequate measure-
ment. The beautiful power law in Fig. A.8 is created by an unfortunate combination of
measurement error and actual particle trajectories. The value of the�2 cutoff used in
section A.1.6 to eliminate the effect of multiple particles was chosen to minimize the
“contribution from measurement error” which we now know contained some actual ac-
celerations. The�2 cutoff being too stringent was part of the cause of the acceleration
autocorrelation function giving too large a value for the Kolmogorov time scale and hence
the dissipation. We have found that we are not yet able to adequately resolve the acceler-
ation autocorrelation function even with the silicon strip detector data, and so the attempt
to measure the dissipation from it was misguided.

Although the actual value of the acceleration variance we found was incorrect, it turns
out that this does not affect the primary conclusion of the paper–that the acceleration vari-
ance is well described by the Kolmogorov scaling in this range of Reynolds number. The
reason for this is that while the reported variance excludes part of the true accelerations,
it excludes a constant fraction. This can be seen from Fig. 4.10 where we see that the
actual acceleration variance versus fit length for the large Reynolds numbers are nearly
universal curves when scaled by Kolmogorov variables. The method used in this paper
consistently used the value of this curve at about6�� (3�� in Fig. A.14) as the true accel-
eration variance. Across the range of Reynolds numbers reported in the paper, this value
scales almost exactly as the true acceleration variance does. A fortunate combination of
factors also resulted in the reported value for the Kolmogorov acceleration constant be-
ing in the correct range. The errors in the energy dissipation and the acceleration variance
cancelled each other so that the value ofa0 = 7�3 agrees with more recent measurements
within the error estimate.

In the paper, we found it surprising that the values of the acceleration variance for the
250 �m and450 �m particles were nearly the same, and it turns out that the strip detector
finds them to be significantly different. This error occurred because the extrapolation to
large fit times is not very sensitive to the difference between the two particle sizes. As
seen in Fig. A.14, an extrapolation of the curves for two particle sizes can easily give the
same result when the true values at zero fit time are very different.

In conclusion, more precise measurements have revealed that the self-consistent data
analysis used in this paper had some flaws. These have their roots in the error in the
measurement of the dissipation and in the erroneous assumption of gaussian accelerations
in the Monte-Carlo model. The data was not of sufficient quality to convincingly support
all of the conclusions that were drawn; however, it turns out that except for the particle
size dependence, the conclusions are still correct.



Appendix B

Digital Detector Controller

This appendix describes the controller board which produces the signal sequences nec-
essary to read out the Viking chips. This board contains the master clock with which all
the data acquisition equipment is synchronized. The board is housed in a gray box, and
is easily identified by ribbon cables connecting it to the master computer and the repeater
cards. A photograph of the detector controller is shown in Fig. B.1.

B.1 Components

The central component of the board is an Altera Programmable Logic Array (PAL), part
number EPM7160ELC84-10. The pinout for this chip is shown if Fig. B.3. The rest of
the board consists only of a clock, a delay line, line drivers, a set of dip switches, and
connectors:

� One crystal oscillator–20 MHz. Pinouts are in the Digikey catalog. When viewed
from the bottom they are: (clockwise) 1 NC, 7 Gnd, 8 Output, 14 +V.

� One delay line, Dallas Semiconductor part number DS1010, which is used to adjust
the phase of the clock sent to the A/D boards to that the A/D converters sample in
the correct phase with serial data stream from the detectors.

� Five differential line drivers, part number DS26C31TN from National Semicon-
ductor, which turn the signals on the board into the low voltage differential signals
expected by the repeater card.

� One set of inverting line drivers which drive the BNC output lines. We originally
tried a Texas Instruments part number SN74AS1034AN, but it could not drive the
50
 terminated lines. The solution was to piggyback a set of bipolar transistors and
resistors onto the line driver to provide sufficient current.

100



101

Figure B.1: Photograph of the detector controller
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B.2 Functionality

At the heart of the circuit is a counter which controls the readout of each frame (a frame is
one complete readout of all channels of the detector). At specified values of this counter,
the various signals are initiated that control the Viking multiplexer and acousto-optic mod-
ulator (AOM) that pulses the illumination laser. There are three additional functions the
circuit fulfills. It contains elements that read parameters sent by the master computer. It
has logic that controls triggering of the detection system. It also counts the number of
triggers so that the desired number of frames are read out. Below is a brief description of
each function.

All of the details are available by looking at the Max+plus II files that are used to pro-
gram the Altera PAL chip. These are available in my home directory on the LNS Windows
NT network underz: ngav3 ncontrol6 . The main module iscontrol6.gdf . They
are also on a floppy disk in the magnetic media drawer in B16. The graphical program
code and examples of the timing of input and output signals in shown in Figs. B.4–B.12.
If you need to modify the PAL programming, you will need to use the Altera programmer
which is in the computer room on the second floor of Wilson lab. We have an old version
of Max+plus II (8.3) and the software guard for it. An updated version of Max+plus II
can now be downloaded from http://www.altera.com. The person in LNS who knows all
about such things is Chris Bebek.

B.2.1 Viking control signals

The signals required to control the Viking (VA1) are documented on the IDE AS web
pages and in the Viking controller and hybrid documentation books. The primary signals
to keep track of are the shiftin, hold, and clk. When hold goes high, the sample and
hold amplifiers on the Viking are latched. A pulse on shiftin initiates readout of the
multiplexer. The values of each channel are then read out on rising edges of the clk. The
clk is only active during the readout of the 128 channels.

B.2.2 Setting controller registers

The master computer sets the various parameters needed by the detector controller through
the computer’s digital I/0 board (PCL-726). The information is passed over the computer
digital output to the card. The pinouts are given in the inputs section below. Of the 16
computer digital output lines, the top 4 are dedicated control lines. The lower 12 lines
are a bus to set the registers on the controller. The lower 8 lines (1-8) contain an eight bit
word. The next 4 lines (9-12) contain the address of the register to be set. When pin 13 is
high the addressed register is set to the input word. When pin 13 is brought low, the value
is stored. The register values are:

� Address 0: period, low 8 bits. True readout period is (period+3) clock cycles

� Address 1: period, high 3 bits
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� Address 2: frame, low 8 bits. Sets the number of number of triggers sent to the A/D
boards and hence the number of frames acquired

� Address 3: frame, high 8 bits

� Address 4: aomon, low 8 bits. Sets the clock cycle when the aom turns on

� Address 5: aomon, high 3 bits

� Address 6: aomoff, low 8 bits. Sets the clock cycle when the aom turns off

� Address 7: aomoff, high 3 bits

An example of the signals that set the controller registers is in Fig B.10. The number of
bits used in each of these parameters is set by the size of the counter it is compared to.
The original design was for a smaller chip (EPM7128ELC84-7) and so the counters and
registers were made as small as possible to fit on the chip. Now there is more space on the
EPM7160ELC84-10, but I have left the program the same since other aspects are more
likely to need to be expanded.

B.2.3 Trigger logic

The controller was originally intended to trigger when a photodetector recorded that a
particle was in view. This part of the system has been changed, so that the detector is
continuously triggered with a signal generator. In case it is to be revived in the future, here
is a brief outline of the trigger logic. As with most computer logic, the best documentation
is the actual code. The trigin signal comes either from a trigger photodiode or from a
pulse generator. If this is high just before readout, and it was not high just before the
last readout, then this is the beginning of an event and triggers should be sent to the A/D
converters to readout the desired number of frames. After the trigger counter returns that
enough triggers have been sent to the A/D cards, the holdtrigger signal is set high and
sending triggers is disabled. This signals the master computer that acquisition is complete.
When the master computer is ready for the next sequence, it sets the computerbusy line
high and then low again. This allows the master to be sure that no more triggers are sent
until the slave computers are rearmed to accept triggers. After the computerbusy line
goes low, readout is initiated again the next time the trigin goes high.

B.2.4 Trigger counter

The trigger counter is a 16 bit counter that counts the number of triggers that have been
sent to the A/D converters and sets a flag when the correct number have been sent.
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Figure B.2: Pin numbers for the 20 pin connector used for inputs and outputs from the
detector controller. This view is of the male connectors on the controller board.

B.3 Connectors

B.3.1 Inputs

There are two input connectors: the BNC trigger input and the 20 pin ribbon cable con-
nector from the master computer digital out. The 20 pin cable connector as seen from the
top of the board is shown in Fig. B.2, and its pinout is

� Pins 1-8 = Data lines

� Pins 9-12 = Address lines

� Pin 13 = Address enable

� Pin 14 = Fake trigger

� Pin 15 = Clear

� Pin 16 = Computer Busy

� Pins 17-18 = Gnd

� Pins 19-20 = Not connected to controller card(Computer +5, +12 V).

B.3.2 Outputs

The outputs from the controller board are

� 20 pin connector to the computer digital input

� Four 20 pin connectors carrying differential signals to the repeater cards
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� Trigger signal to the A/D boards (BNC)

� Clock signal to the A/D boards (BNC)

� AOM signal to AOM amplifier (BNC)

The connector to the master computer digital input is a 20 pin ribbon cable connector
even though it only carries one signal. (Fig. B.2). Its pinout is

� Pins 1-15 = NC

� Pins 16 = holdtrigger

� Pins 17-18 = Ground

� Pins 19-20 = Not connected to controller card(Computer +5, +12 V)

The connectors to the repeater cards are also 20 pin ribbon cable connectors. Currently
there are 4 of these connectors on the board enabling control of 4 detectors. More could
be added by installing more line drivers and connectors. These connectors are also shown
in Fig B.2, and their pinout is

� Pin 1 = areset*

� Pin 2 = areset

� Pin 3 = dreset

� Pin 4 = dreset*

� Pin 5 = hold*

� Pin 6 = hold

� Pin 7 = clkout

� Pin 8 = clkout*

� Pin 9 = shift in*

� Pin 10 = shiftin

� Pins 11-16 = NC

� Pins 17,18,20 = Ground

� Pin 19 = Vcal (Not Used)
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B.3.3 Dip switch and jumper settings

The jumper just below the PAL chip is used to set the delay on the clock output line. This
allows the phase of the A/D sampling to be adjusted relative to the Viking readout. The
jumper sets the delay in units of 10 ns. The pin at the right, next to G0, is no delay. H1 is
10 ns and so on until H0 is 100 ns. The dip switches at the top of the PAL were used on a
previous version of the controller. Currently they are not connected.
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Figure B.3: Pinout of the Altera EPM7160ELC84 chip.
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MAX+plus II 9.5   File: CONTROL6.GDF   Date: 03/30/2000 13:09:58   Page: 1

Inputs from the controller board

Inputs from the 20 pin computer cable

Input from the comparator

divide the input 20 MHz clock by 2 and send it out 
to be brought in as the master clock

comp_busy INPUT

trig_in INPUT
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address_input[3..0] INPUT

address_enable INPUT

dig_input[7..0] INPUT

clk_double INPUT

clk INPUT

clr INPUT
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Figure B.4: Altera graphical design file (.gdf) for the main module of the detector controller.
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MAX+plus II 9.5   File: READ_INPUTS.GDF   Date: 03/30/2000 13:17:12   Page: 1
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Figure B.5: Altera graphical design file (.gdf) for the module that reads inputs from the master computer digital output.
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T

N
O

T

NOT

NOT

JKFF

CLRN

Q

K

J
PRN

VCC

GND

D

DFF

CLRN

Q
PRN

D

DFF

CLRN

Q
PRN

D

DFF

CLRN

Q
PRN

D

DFF

CLRN

Q
PRN

D

DFF

CLRN

Q
PRN

clk

q[10..0]
aom_on[10..0]

period[10..0]

aom_off[10..0]

clk

clr

clr

clkn_shift_in
clr

clkclk

d_reset
clr

clk

clr

clk

clr

Figure B.6: Altera graphical design file (.gdf) for the module that contains the primary counter that sequences the signals to control
the Vikings.
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record whether the last frame saw trig_in high

check if trig_in is high two clock cycles before n_shift_in

If this is the first frame with trig_in high, enable sending the trigger

Disable sending trigger when hold_trigger or comp_busy are high

hold_trigger is high when the trigger counter is done.  Comp_busy sets it back low

syncronize the comp_busy input

comp_busy INPUT

trig_cnt_done INPUT

n_shift_in INPUT

pn_shift_in INPUT

ppn_shift_in INPUT

trig_in INPUT

clr INPUT

clk INPUT

comp_busy_syncOUTPUT

hold_triggerOUTPUT

trig_outOUTPUT

VCC

VCC
AND2

D

DFF

CLRN

Q
PRN

D

DFF

CLRN

Q
PRN

D

DFF

CLRN

Q
PRN

D

DFF

CLRN

Q
PRN

D

DFF

CLRN

Q
PRN

D

DFF

CLRN

Q
PRN

D

DFF

CLRN

Q
PRN

D

DFF

CLRN

Q
PRN

NOT

NOT

NOT

N
O

T

N
O

T

OR2

OR2

AND3

OR3

clr

last_high
n_shift_in

high
ppn_shift_in

clr
nn_shift_in

clk
n_shift_in

n_shift_in

high

last_high

pn_shift_in

clr

hold_trigger

comp_busy_sync

clr

comp_busy_synccomp_busy
clkclkclk

Figure B.7: Altera graphical design file (.gdf) for the module that controls sending of triggers to the A/D cards.
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LPM_AVALUE=
LPM_DIRECTION="UP"
LPM_MODULUS=
LPM_SVALUE=
LPM_WIDTH=16

ac
lr

q[]

LPM_COUNTER

CHAIN_SIZE=
LPM_PIPELINE=
LPM_REPRESENTATION=
LPM_WIDTH=16
ONE_INPUT_IS_CONSTANT="YES"

dataa[]
datab[]

aeb

LPM_COMPARE

clr INPUT

comp_busy_sync INPUT

frame[15..0] INPUT

trig_out INPUT

clk INPUT

D

DFF

CLRN

Q
PRN

NOT

trig_cnt_doneOUTPUT

OR3

trig_out

trig_cnt_done

clk

clr

frame[15..0]

clr

comp_busy_sync

Figure B.8: Altera graphical design file (.gdf) for the module that counts the number of triggers sent to the A/D cards.
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[I] trig_in

[I] fake_comparator

[I] comp_busy

[I] clr

[I] address_enable

[O]trig_out_inv

[O]n_shift_in

[O]hold_trigger

[O]hold

[O]d_reset

[O]clk_out

[O]a_reset

[O]aom

[I] address_input[3..0]

[I] dig_input[7..0]

[B] frame[15..0]

[B] aom_off[10..0]

[B] aom_on[10..0]

[B] period[10..0]

[B] m_counter:3|q[15..0]

0

0

10

110

100

140

3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

150.0us 200.0us 250.0us 300.0us 350.0us 400.0us 450.0us 500.0us 550.0us 600.0us 650.0us 700.0Name:

Figure B.9: Altera simulator channel file (.scf) for the detector controller which shows the time traces of all signals used by the
controller. In particular, this shows how the trigin, compbusy, holdtrigger and trigout inv are used.
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[I] trig_in

[I] fake_comparator

[I] comp_busy

[I] clr

[I] clk_double

[I] clk

[I] address_enable

[O]trig_out_inv

[O]to_clk

[O]n_shift_in

[O]hold_trigger

[O]hold

[O]d_reset

[O]clk_out

[O]a_reset

[O]aom

[I] address_input[3..0]

[I] dig_input[7..0]

[B] frame[15..0]

[B] aom_off[10..0]

[B] aom_on[10..0]

[B] period[10..0]

[B] e_counter:86|q[10..0]

[B] m_counter:3|q[15..0]

0 1 2 3 4 5 6 7 0

0 140 0 10 0 100 0 110 0

X X 10

X X 110

X X 100

X X 140

0 X 0 -

0

1.0us 2.0us 3.0us 4.0us 5.0us 6.0us 7.0us 8.0us 9.0us 10.0us 11.0us 12.0us 13.0us 14.0usName:

Figure B.10: This is part of the Altera simulator channel file (.scf) for the detector controller. It shows the signals that initialize the
registers that set readout parameters.



1
1

5

MAX+plus II 9.5   File: C:\UNZIPPED\CONTROL6\CONTROL6.SCF   Date: 03/30/2000 13:36:20   Page: 1

[I] trig_in

[I] fake_comparator

[I] comp_busy

[I] clr

[I] clk_double

[I] clk

[I] address_enable

[O]trig_out_inv

[O]to_clk

[O]n_shift_in

[O]hold_trigger

[O]hold

[O]d_reset

[O]clk_out

[O]a_reset

[O]aom

[I] address_input[3..0]

[I] dig_input[7..0]

[B] frame[15..0]

[B] aom_off[10..0]

[B] aom_on[10..0]

[B] period[10..0]

[B] e_counter:86|q[10..0]

[B] m_counter:3|q[15..0]

0

0

10

110

100

140

0

22.5us 25.0us 27.5us 30.0us 32.5us 35.0us 37.5us 40.0us 42Name:

Figure B.11: This is part of the Altera simulator channel file (.scf) for the detector controller. It shows the sequence of signals that
read out a single frame.
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[I] trig_in

[I] fake_comparator

[I] comp_busy

[I] clr

[I] clk_double

[I] clk

[I] address_enable

[O]trig_out_inv

[O]to_clk

[O]n_shift_in

[O]hold_trigger

[O]hold

[O]d_reset

[O]clk_out

[O]a_reset

[O]aom

[I] address_input[3..0]

[I] dig_input[7..0]

[B] frame[15..0]

[B] aom_off[10..0]

[B] aom_on[10..0]

[B] period[10..0]

[B] e_counter:86|q[10..0]

[B] m_counter:3|q[15..0]

0

0

10

110

100

140

- 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 0 1 2 3

0 1

67.25us 67.5us 67.75us 68.0us 68.25us 68.5us 68.75us 69.0us 69.25us 69.5Name:

Figure B.12: This is part of the Altera simulator channel file (.scf) for the detector controller. It shows a closeup of the signals that
terminate and initiate a frame readout.



Appendix C

Convergence of Moments of PDFs

A crucial consideration when presenting measurements of the moments of probability
distributions is whether sufficient samples are used so that the moments are converged.
This appendix describes a study I made to understand the convergence problem and to
estimate the number of samples required to resolve the moments of the fluid particle
acceleration distribution.

Historically one of the great challenges in turbulence measurement has been to de-
velop techniques that allow enough samples to be taken. When measurements are made
in atmospheric flows where it is possible to achieve very large Reynolds numbers, the
flow conditions fluctuate in time and this places a limit on the number of samples that can
be taken. In well controlled laboratory flows using hot wire anemometry, it is possible to
obtain huge number of samples.

Turbulence measurement techniques relying on imaging particle positions have greater
problems with convergence. For standard particle image velocimetry, two high resolution
images must be acquired and processed for each velocity field measurement. Although
available computational resources are able to handle103 or 104 velocity fields, I do not
know of any high Reyolds number statistical results obtained in this way. (Of course there
are other limitations as well, but here we are concerned with statistical convergence.) Par-
ticle tracking measurements face an even bigger challenge. Hundreds of images of each
trajectory are required in order to obtain particle positions as a function of time. Ap-
proaches such as 3D particle tracking velocimetry (Maas et al, 1993) deal with this by
tracking hundreds of particles simultaneously so that it works out to order 1 trajectory per
image. With our strip detector measurements we can only track a few particles at once,
but because each image is only 512 strips rather than5122 = 262144 pixels, we are able
to obtain many more images. In 1 day of data taking we can acquire60000 sequences of
4000 images each which when compressed is typically about 4 Gigabytes of data.

Now we consider the convergence requirements for the moments of the acceleration
distribution. This requires only a straight forward statistical analysis, but the terminology
can get complicated. Assume that we have measured a set of N independent samples,xi,
from a stationary probability distributionP (x). We wish to estimate the moments of the

117



118

distribution

mn =

Z 1

�1

xnP (x)dx (C.1)

and we have been trained to expect that the statistics to use to estimate these are the
moments of the measured samples

~mn =
1

N

X
i

xni : (C.2)

Note thatmn is a number determined by the distributionP (x) while ~mn is a random
variable which is different for different sample sets. So in determining the error in our
estimate of a moment we have to answer two questions. First, is the estimate unbiased,
i.e. is h ~mi = mn? Second, what is the variance of the estimate around its mean value?

By commuting the average and the sum in Eq. C.2 it is simple to see that the mo-
ments are unbiased estimates. But that is not nearly the entire story on unbiasedness. For
example, instead of the raw moments, consider the normalized moments.

~Mn =
1
N

P
i x

n
i�

1
N

P
i x

2
i

�n=2 : (C.3)

Now the average and the sums do not commute and it turns out thath ~Mni 6= mn

m
n=2
2

:

To gain a better understanding of this effect and to estimate the number of samples
necessary to accurately estimate moments, I wrote a Monte Carlo which chooses random
samples from a known distribution. I have studied both gaussian distributed samples and
samples from a stretched exponential distribution,

P (a) = C exp

� �a2
(1 + ja�=�j
)�2

�
: (C.4)

As discussed in section 4.3, a fit of this function provides an excellent parameterization
of the acceleration distribution. This study was made withC = 0:8124, � = 0:481,

 = 1:464, � = 0:29825. These are different from the values in section 4.3 because they
were obtained from a fit to a much smaller data set. TheNumerical Recipes(Press et al,
1992) chapter on random numbers is a very helpful introduction to generating samples
from a distribution. I wrote a version of their rejection method that uses this stretched
exponential distribution.

The code choosesN samples and calculates the desired statistics from them. This is
then repeated many times to obtain the distribution of the measured statistics. Figure C.1
shows the distributions of measured second moments for samples from the acceleration
distribution withN ranging from 100 to 50,000. Figure C.2 is similar except it shows
the distributions of the measured fourth moments. The true 4th moment in this param-
eterization of the acceleration distribution is equal to 21.6. Both of these are unbiased
estimates, but the fourth moment is unbiased in a problematic way. For smallN the most
probable value of the measurement is far below the mean value since there is an extremely
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Figure C.1: Distribution of variances measured from samples from the distribution in
Eq C.4.
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Figure C.2: Distribution of fourth moments measured from samples from the distribution
in Eq C.4.
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Figure C.3: Distribution of flatness factors measured from samples from the distribution
in Eq C.4.

long positive tail. It is sometimes this effect that is referred to when researchers question
whether the scatter between data sets is an accurate measure of the degree of statisti-
cal convergence. Measured moments can all be clustered around the wrong value if the
number of samples is too small.

Figure C.3 contains the distributions of the measured flatness. It appears similar to
the fourth moment, but it is not unbiased. Figure C.4 shows the mean value for each of
the previous 3 figures normalized by the value obtained by integrating the pdf. The 2nd
moment and the 4th moment show no bias while the flatness shows a significant bias that
disappears in the limitN ! 1. This bias is almost never significant, since the variance
of the measurement is usually larger than the bias. However, it has been helpful for me to
see it to understand the issue precisely.

The second question concerning the variance of a statistical estimate around its mean
is the one that matters most in considering convergence. If the underlying distribution
is a gaussian, the variance of at least the low order moments is known analytically. The
second moment measured fromN gaussian distributed random variables with unit vari-
ance has a�2

N distribution with variance2=N . Thus the rms error in a measurement of
a second moment of this gaussian distribution is

p
2N�1=2: The fractional rms errors for

measurements of second and fourth moments of the acceleration distribution are shown in
Fig C.5. They both scale asN�1=2; but the proportionality constants are much larger than
for a gaussian. The second moment scales as4:5N�1=2 and the fourth as48N�1=2. Thus
it takes about 2000 samples to achieve a 10% measurement of the variance and 230,000
samples for the same accuracy on the fourth moment. A 1% measurement then takes 100
times this many samples.
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Figure C.4: Relative bias of the variance, fourth moment, and flatness estimators as a
function of the number of samples used. For each sample set, the bias is the mean value
of the estimator divided by the true value of the parameter it is to estimate.
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It is not easy to directly use these numbers to estimate statistical measurement errors
though. First, samples are often not independent. In our data, we sample many times
along a single trajectory. This can give the appearance of convergence by making pdfs
nice and smooth while still not being converged. Second, the convergence of the 4th
moment in particular depends strongly on the parameters of the distribution. Some of
our data sets appear to have flatnesses above 50, and this means that many more than
230,000 samples are needed for a 10% estimate. The approach we have actually used to
estimate uncertainties is to divide the the data sets into subsets and estimate uncertainties
from differences between the subsets. If the measurements from different subsets are
gaussian distributed, the the error is the standard deviation of the measurements from
subsets divided by the square root of the number of sets. We use this as the best estimate,
recognizing that if the number of samples are small, then this gaussian assumption breaks
down as shown in Fig. C.2.
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